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Composition du jury
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Laurent Manivel IMT - Université Paul Sabatier Rapporteur
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Al andar se hace camino
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.

Antonio Machado, Caminante no hay camino
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En marchant se fait le chemin
et c’est en se retournant
que l’on peut contempler le sentier
que l’on n’aura jamais plus l’occasion d’emprunter.

Traduction personnelle
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à mieux envisager et la clairvoyance et les fulgurances de Daniele qui ont été des
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Résumé grand public

L’explosion récente des capacités de calculs numériques qui s’est produite
au cours des trente dernières années a renversé les perspectives de recherches
et développements. La simulation numérique permet désormais une estima-
tion plus fiable et beaucoup plus rapide de résultats autrefois inatteignables.
Dans cette thèse, nous appliquons ce principe très général à un domaine des
mathématiques, la géométrie algébrique, qui concerne l’étude des équations
polynomiales. Cela nous permet de prévoir l’existence de configurations
géométriques inattendues apportant ainsi un point de vue original sur des su-
jets classiques de géométrie. En plus de ces simulations, nous nous attachons
à démontrer mathématiquement ces phénomènes annoncés numériquement.
Nos résultats concernent aussi le développement de méthodes numériques
visant à améliorer davantage les capacités et la rapidité des simulations dans
ce domaine.

Large audience abstract

The recent growth in capacity of numerical calculus over the last thirty
years has brought a major change in perspective regarding matters of re-
search and development. Numerical simulation allows a more reliable and
faster estimation of results unattainable beforehand. In this thesis, we apply
this very general principle to a domain of mathematics, algebraic geometry
which concerns the study of polynomial equations. This allows us to predict
unexpected geometrical configurations bringing an original point of view to
classical geometrical subjects. In addition of those simulations, we focus on
proving mathematically those predicted phenomenons. Our results also con-
cern the development of numerical methods aiming to further improve the
capacity and the rapidity of simulations in this area.
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Résumé

Dans cette thèse, nous interprétons géométriquement la torsion de l’algèbre
symétrique d’un faisceau d’idéaux IZ d’un schéma Z défini par n+1 équations
dans une variété n-dimensionnelle. Ceci revient à étudier la géométrie de la
projectivisation de IZ . Les applications de ce point de vue concernent en
particulier le domaine des transformations birationnelles de l’espace projectif
de dimension 3 au sujet duquel nous construisons des transformations bi-
rationnelles explicites qui ont le même degré algébrique que leur inverse, le
domaine des courbes libres et presque-libres au sujet duquel nous généralisons
une caractérisation des courbes libres en étendant les notions de nombre de
Milnor et de nombre de Tjurina. Nous abordons aussi le sujet des hypersur-
faces homaloides, notre motivation initiale, au sujet duquel nous exhibons en
particulier une courbe homaloide de degré 5 en caractéristique 3. La dernière
application concerne le calcul de l’inverse d’une transformation birationnelle.

Mots clés: Géométrie algébrique, Algèbre commutative, Théorie des singularités,

Transformations birationelles, Hypersurfaces homalöıdes, courbes libres et presque libres,

algèbre de Rees et algèbre symmétrique, Syzygies, Résolutions

Title of the thesis : Geometry of the projectivization of ideals and
applications to problems of birationality

Abstract

In this thesis, we interpret geometrically the torsion of the symmetric
algebra of the ideal sheaf IZ of a scheme Z defined by n + 1 equations in
an n-dimensional variety. This is equivalent to study the geometry of the
projectivization of IZ . The applications of this point of view concern, in
particular, the topic of birational maps of the projective space of dimension
3 for which we construct explicit birational maps that have the same algebraic
degree as their inverse, free and nearly-free curves for which we generalise a
characterization of free curves by extending the notion of Milnor and Tjurina
numbers. We tackle also the topic of homaloidal hypersurfaces, our original
motivation, for which we produce in particular a homaloidal curve of degree
5 in characteristic 3. The last application concerns the computation of the
inverse of a birational map.

Keywords: Algebraic Geometry, Commutative algebra, Singularity theory, Bira-

tional maps, Homaloidal hypersurfaces, free and nearly free curves, Symmetric and Rees

algebra, Syzygies, Resolutions
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Introduction

We introduce first the basic objects and topics we deal with and we present our
contribution to these topics in the second section. Our objects of interest are
rational maps between algebraic varieties over a field k. A rational map Φ : X 99K
Y is an equivalence class of pairs 〈U,Φ〉 where U is a nonempty open subset of X,
ΦU is a morphism of U to Y , and where 〈U,ΦU 〉 and 〈V,ΦV 〉 are equivalent if ΦU
and ΦV agree on U ∩V . In general, Φ (more precisely a representative of Φ) is not
defined everywhere on X and the closed subset Z of X where Φ is not defined is
called the base locus of Φ.

Letting U = X\Z so that the representative ΦU : U → Y of Φ is a morphism,
the closure of the image of ΦU in Y does not depend on the representative of Φ
and is called the image of Φ, denoted by Im(Φ). Given also a closed subvariety W
of Y , the closure in X of the inverse image Φ−1

U (W ), denoted by Φ−1(W ) is called
the inverse transform of W under Φ.

The graph ΓΦ of Φ is defined as the closure

{
(
x,Φ(x)

)
, x ∈ U} ⊂ X × Y

of the graph of the morphism ΦU : U → Y in X × Y (it does not depend on the
representative of Φ as well).

Since dominant rational maps Φ : X 99K Y and Ψ : Y 99K X can be composed,
we are especially interested in the case when this composition has the identity map
as representative. In this case, we say that Φ (and Ψ) is birational.

Assuming that the varieties X and Y are irreducible of the same dimension and
that Φ : X 99K Y is dominant (i.e. Im(Φ) is dense in Y ), we define the topological
degree of Φ as the degree

dt(Φ) = [k(X) : k(Y )]

of the field extension of k(X) over k(Y ) the respective fraction fields of X and Y
(cf Proposition 1.3.8 for a justification that the integer we just defined is indeed
the actual topological degree of a morphism Φ : U → Y ). In this perspective, the
property of Φ to be birational is equivalent to dt(Φ) = 1.

Our main source of examples and applications comes from the situation where
X = Y = Pn. In this case, a preferred representative of a rational map is defined
by n + 1 homogeneous polynomials φ0, . . . , φn ∈ k[x0, · · · , xn] of the same degree
δ without common component.

Example 1. Let τ : P2 99K P2 be the map defined by the polynomials x1x2, x0x2

and x0x1. The base locus Z of Φ is the union of the three points V(x1, x2) ∪

11



12 INTRODUCTION

V(x0, x2) ∪ V(x0, x1) (in the following, the notation V(s) for s a polynomial or
more generally a section of a sheaf always stands for the zero locus of s in the
ambient variety).

Moreover τ ◦ τ : P2 99K P2 is defined by the polynomials

(x0x1x2)x0, (x0x1x2)x1, (x0x1x2)x2.

But considering the map id defined by the polynomials x0, x1, x2, we see that τ ◦ τ
and id coincide over P2\

(
V(x0) ∪ V(x1) ∪ V(x2)

)
. So, since rational maps are

equivalence classes, a preferred representative of τ ◦ τ is the identity map defined
by x0, x1, x2.

Actually, the map τ is quite special, at least because it is an involution (i.e.
τ = τ−1). It is called the standard Cremona map.

More generally, X (respectively Y ) being a smooth subvariety of Pn, (respective-
ly a smooth subvariety of Pm) we are interested in the multidegree of Φ. Roughly
letting k = dim(X) and i ∈ {0, . . . , k}, we can define a number di(Φ), called ith

projective degree of Φ, as follows

di(Φ) = card
(
Hi

1 ∩ Φ−1(Hk−i
2 )

)
where Hi

1 is a general (n− i)-plane of Pn and Hk−i
2 is a general (m− k + 1)-plane

of Pm. Less roughly, one has to use intersection theory, cf. Definition 1.3.12.
The sequence

(
dk(Φ), . . . , d0(Φ)

)
is called the multidegree of Φ. When there is

no ambiguity about the rational map Φ, we simply denote by (dk, . . . , d0) the
multidegree of Φ.

Example 2. When Φ : Pn1 99K Pn2 is defined by n + 1 homogeneous polynomials
φ0, . . . , φn ∈ k[x0, · · · , xn] of the same degree δ without common factor, the first
projective degree d1(Φ) of Φ is the cardinality of the intersection of a hypersurface

V(
n∑
i=0

aiφi) of degree δ with n−1 general hyperplanes. Hence, by Bézout’s theorem,

d1(Φ) = δ is the algebraic degree of the map Φ, i.e. the degree of each polynomials
defining Φ.

Example 3. Let Φ : P3
1 99K P3

2 be a rational map of multidegree (1, d2, d1, 1) for a
given integer n. In particular Φ is birational of inverse Φ−1. But since ΓΦ = ΓΦ−1 ,
we see that the 2nd projective degree d2(Φ) of Φ, is also the 1st projective degree
d1(Φ−1) of Φ−1, hence the algebraic degree of Φ−1. In greater generality, given an
integer n ≥ 2 and a birational map Φ : Pn 99K Pn of multidegree (1, dn−1, . . . , d1, 1),
dn−1 is the algebraic degree of Φ−1.

Since the composition Φ1 ◦ Φ2 of two birational maps is birational, the set of
birational maps has group structure whose group law is the composition of maps.
This group is called the Cremona group of Pn, denoted by Bir(Pn) and its elements
(birational maps) are also called Cremona maps. Let us present a problem related
to the multidegree of the graph of a Cremona map Φ following [Dol11, 7.1.3]. Let
Φ : Pn 99K Pn be a Cremona map and let (1, dn−1, . . . , d1, 1) be its multidegree.
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Theorem 4. (L.Cremona, Cremona’s inequalities) For any n ≥ i, j ≥ 0,

1 ≤ di+j ≤ didj ,
dn−i−j ≤ dn−idn−j .

See [Dol11, 7.1.7] for the proof of this result.

Remark 5. [Dol11, 7.1.8] There are more conditions on the multidegree which
follow from the irreducibility of the graph Γ of Φ. For example, if k is a field of
characteristic 0, by using the Hodge type inequalities we get the inequalities

d2
i ≥ di−1di+1.

These conditions on the multidegree lead to the following problem [SJ68]

Problem A. Let (1, dn−1, . . . , d1, 1) be a sequence of integers satisfying the Cre-
mona inequalities and the Hodge type inequalities. Does there exist a Cremona map
with this sequence as multidegree?

As we will see, our work fits in this question because we construct Cremona
maps with given multidegree. The basis of these constructions is to study rational
maps whose defining polynomials are the maximal minors of a matrix. Let us
explain in more details this situation.

Determinantal rational maps

Let n ≥ 1 and M be a matrix of size (n + 1) × n whose entries are homogeneous
polynomials in k[x0, · · · , xn] and such that all the entries of each column have the
same algebraic degree. Then the n × n-minors of M define a rational map of Pn.
These maps are called determinantal rational maps and, when birational, they are
called determinantal Cremona maps.

We are especially interested in determinantal Cremona maps under the influ-
ence of the two articles [Pan99] and [DH17]. In [Pan99], the author describes
in particular families of determinantal Cremona maps such as the families of de-
terminantal cubo-cubic of P3. A Cremona map of this family is defined by the
3× 3-minors of a 4× 3 matrix with linear entries in k[x0, . . . , x3] (plus additional
conditions) and it has multidegree (1, 3, 3, 1) from where the name determinantal
cubo-cubic comes from. In [DH17], the two authors describes a family of determi-
nantal quarto-quartic. A Cremona map of this family is defined by the 3×3-minors
of a 4× 3 matrix with two columns of linear entries and one columns of quadratic
entries and it has multidegree (1, 4, 4, 1). We were particularly interested in con-
structing other examples of determinantal maps, since, as we will see, such a study
is well accessible by the objects we consider.

Homaloidal hypersurfaces and free divisors

We present now another type of Cremona map of Pn, those whose polynomials are
the partial derivatives of a homogeneous polynomial f ∈ k[x0, · · · , xn]. Even if
our results and research embrace eventually a more general point of view, namely,
studying the presentation of the base ideal of any rational map, we emphasize that
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tackling the domain of homaloidal hypersurfaces was our first motivation. Here
the field k is an algebraically closed field of any characteristic and we let n ≥ 1 be
an integer.

Definition 6. Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial and for all
i ∈ {0, . . . , n} we let fi = ∂f

∂xi
be the partial derivative of f with respect to the ith

variables. We call the rational map

Φf : Pn Pn

x
(
f0(x) : . . . : fn(x)

)
the polar map of the hypersurface F = V(f) defined by f in Pn. The topological
degree of Φf , i.e. its nth projective degree, is called the polar degree of F and the
ideal of the base locus of Φf is called the jacobian ideal of F .

The hypersurface F or the polynomial f is called homaloidal if Φf is birational.

We emphasize that if f has degree d, the partial derivatives fi have degree d−1
(or are 0). However, the algebraic degree of Φf may not be equal to d− 1 since we
have to remove common factors of the fi in order that a representative of Φf has a
codimension at least 2 base locus. This is the case in particular when f is not square
free, that is when one of the exponents αi in the decomposition f = qα1

1 . . . qαmm
into irreducible homogeneous polynomials qi ∈ k[x0, . . . , xn] is stricly greater than
1. Stating that f is square free is equivalent to set that the hypersurface F = V(f)
is reduced.

As examples of homaloidal hypersurfaces, we have the foundational result of
I.V.Dolgachev classifying the reduced homaloidal curves assuming the base field k
is the field of complex numbers C.

Theorem 7. [Dol00, Theorem 4] The only complex reduced homaloidal curves are
the smooth conics, the unions of three general lines and the unions of a smooth
conic with one of its tangent.

Without giving the complete proof of this result, let us explain it in the fol-
lowing paragraphs. Given a polar map Φf = (f0 : . . . : fn), the base locus
Z = V(f0, . . . , fn) of Φ is precisely the singular locus of F , that is, the locus
where the tangent space of F has bigger dimension than expected. When we con-
sider curves in P2, this singular locus is necessarily 0-dimensional. Generalising
to a hypersurface having only 0-dimensional singularities, one number permits to
classify those singularities, the Milnor number :

Definition 8. [Mil68] Let Z be the 0-dimensional singular locus of a hypersurface
F = V(f) of Pn and let z ∈ Z. Via a change of coordinates, suppose that z = (1 :
0 : . . . : 0). Set g[ ∈ k[x1, . . . , xn], the usual deshomogeneisation of a homogeneous
polynomial g ∈ k[x0, · · · , xn] in the chart {x0 6= 0}.

The local Milnor number at z, denoted by µf (Z, z), is defined as

µf (Z, z) = length
(
Okn,z/((f[)1, . . . , (f[)n)

)
where (f[)i =

∂f[
∂xi

.
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The global Milnor number of F , denoted by µf (Z) is the sum
∑
µf (Z, z) over all

z ∈ Z.

Example 9. Let f = x0(x2
1 + x0x2) ∈ k[x0, x1, x2] and F = V(f) ⊂ Pn be

the union of a smooth conic with one of its tangent. The singular locus Z is
equal to V(x2

1 + 2x0x2, 2x0x1, x
2
0) so F is singular at the point z = (0 : 0 : 1).

Hence, on the chart {x2 6= 0}, we have to compute the length of the module
k[x0, x1]/(x2

1+2x0, 2x0x1). As a module, this quotient is only generated by 1, x0, x1

since, for example x2
0 ≡ − 1

2x
2
1x0 ≡ 0 mod (x2

1+2x0, 2x0x1). Hence µf = µf (Z, z) =
3.

When k = C, assuming that this singular locus is finite, the following relation
is established by A.Dimca and S.Papadima [DP03]:

Theorem 10. Let f ∈ C[x0, . . . , xn] be a square free homogeneous polynomial of
degree d and let Φf be the polar map of F = V(f) ⊂ Pn. Assuming that F has
finite base locus, we have:

dn(Φf ) = (d− 1)n − µf (Z). (0.0.1)

Let us explain why the assumption that f is square free is important here.
Since the singular locus of F = V(f) is 0-dimensional and f is square free, the
polynomials fi defining Φf cannot have a common factor (or else the singular
locus of F would have codimension 1), hence the algebraic degree of Φf is d − 1.
So let us explain the relation (0.0.1) as follows. As we will see in more details in
Example 1.3.9, computing the topological degree of Φf is the same as computing the
degree of the intersection of n pull back V(ai0f0+. . .+ainfn) of general hyperplanes
V(ai0y0 + . . .+ ainyn) in Pn after removing the points in the base locus from this

intersection. By Bézout’s theorem, the intersection
n
∩
i=1

V(ai0f0 + . . . + ainfn) has

degree (d− 1)n since the polynomials defining Φf have degree d− 1. To compute
the topological degree of Φf , it remains to subtract to (d− 1)n the multiplicity of
the points in Z. Among all the numbers that can be attached to the base locus
of Z, Theorem 10 states that we have actually to subtract the number µf (Z) to
(d− 1)n.

Example 11. As an example, let us focus on the list of complex homaloidal curves
in Theorem 7.

• a smooth conic F = V(f) ⊂ P2
C verifies µf = 0 so dt(Φf ) = (2− 1)2 = 1.

• up to a projective change of coordinate, the union of three general lines is
the zero locus of f = x0x1x2. It has 3 singular points each one verifying
µf (Z, z) = 1. Hence dt(Φf ) = (3− 1)2 − 3 = 1.

• as we saw in Example 9, the global Milnor number of the union of a smooth
conic with one of its tangent is equal to 3. Hence dt(Φf ) = 1.

From the foundational classification of I.V.Dolgachev of reduced complex homa-
loidal plane curves, the questions bifurcate in several directions for which we present
a non-exhaustive list of results.
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Homaloidal hypersurfaces in higher dimension

Over the field C, we saw that there are three types of homaloidal curves in P2.
Concerning the situation in higher dimension, let us first mention that general con-
structions of homaloidal hypersurfaces existed. For instance, we refer to [Man13,
Theorem 21] for general results about the existence of homaloidal hypersurfaces in
higher dimension. In addition to the construction of examples, one specific prob-
lem was to establish if given n ≥ 3, there exist homaloidal hypersurfaces of Pn of
any degree. In [CRS08], the three authors answer positively to this question by
producing explicit families of homaloidal hypersurfaces of arbitrary degree. More
precisely:

Theorem 12. [CRS08, Theorem 13] For every n ≥ 3 and for every d ≥ 2n − 3
there exists homaloidal hypersurfaces F of Pn of degree d.

Homaloidal hypersurfaces with isolated singularities

In [DP03, 3], A.Dimca and S.Papadima conjectured that given n ≥ 3, any complex
homaloidal hypersurfaces of PnC must have a singular locus of codimension at most
n− 1, i.e. in particular, cannot have a singular locus consisting of isolated points.
This conjecture was then proven by J.Huh in [Huh14]. In a recent paper, D.Siersma,
J.Steenbrink and M.Tibăr proved that, more generally, there are restrictions to the
existence of hypersurfaces with 0-dimensional singular locus and small topological
degree. More precisely

Theorem 13. [SST18, Theorem 1.4] For any integer k ≥ 2, let Kk denote the set
of pairs of integers (n, d) with n ≥ 2 and d ≥ 3, such that there exists a projective
hypersurface V in Pn of degree d with isolated singularities and polar degree k.

Then Kk is finite for any k ≥ 2.

Homaloidal hypersurfaces in positive characteristic

Another domain concerning homaloidal hypersurfaces is to study the problem over
other fields than C and in particular over algebraically closed fields of positive
characteristic. As one can compute, except from a field of characteristic 2, the
three plane curves of Theorem 7 are still homaloidal. So let us state the problem
as follows:

Problem B. Over an algebraically closed field k of positive characteristic, are
there other homaloidal curves than the ones in Dolgachev’s classification?

Another problem in this direction is the following. It was noticed by A.V.Dória,
S.H.Hassanzadeh and A.Simis [DHS12] that a common property of the three com-
plex homaloidal curves is that their singular locus Z is a local complete intersection
at each of its points. This means that each localisation OZ,z of the structure sheaf
of Z is generated by two elements even if it is generated globally by the three par-
tial derivatives (as we will see, this property is equivalent to the fact that Milnor
and Tjurina numbers of the curves coincide).



CONTENTS OF THE MANUSCRIPT 17

Problem C. [DHS12, Question 2.7] Let f ∈ k[x0, x1, x2] be a square free ho-
mogeneous polynomial whose polar map is birational. Is the singular locus Z of
F = V(f) locally a complete intersection at its points?

The reduction problem in positive characteristic

In the spirit of studying the difference between characteristic zero and positive
characteristic, we also consider the following reduction problem. If f = qα1

1 . . . qαmm
is not square free, or equivalently if F is not reduced, the polar map Φf is defined
by the mobile part of the linear system generated by f0, . . . , fn, see the explanation
just after Definition 6 about this problem. Over the field of complex numbers, it was
established by A.Dimca and S.Papadima [DP03] that Φf is birational if and only
if so is the polar map Φfred associated to fred = q1 . . . qm. Over a field of positive
characteristic, this equivalence trivially fails: in characteristic 2 for f = x2yz, Φfred
is birational whereas Φf is not even dominant. This leads to the following problem.

Problem D. Over a field of positive characteristic, given Φf dominant, is it bi-
rational if and only if so is Φfred?

Contents of the manuscript

Given a rational map Φ : Pn1 99K Pn2 defined by n + 1 homogeneous polynomials
φ0, . . . , φn ∈ k[x0, . . . , xn] of degree δ without common factor, we consider a locally
free presentation of the base ideal IZ of Φ:

m
⊕
i=1
OPn1 (−ai) On+1

Pn1
IZ(δ) 0M (0.0.2)

with ai ≥ 1 for all i ∈ {1, . . . ,m}. It defines an ideal sheaf IX on Pn1 × Pn2
generated by the entries of the row matrix

(
y0 . . . yn

)
M where y0, . . . , yn are

the coordinates of Pn2 (x0, . . . , xn being the coordinates of the first factor Pn1 ).
Actually, the scheme X = V(IX) is the projectivization P(IZ) of the ideal IZ
embedded in Pn1 × Pn2 and contains the graph Γ of Φ as an irreducible component.
We have thus the following commutative diagram

Pn1 × Pn2

X

Γ

Pn1 Pn2

p1 p2

π1 π2

σ1 σ2

Φ

where p1 (resp. p2) is the first projection (resp. second projection) and respectively
π1 and σ1 (resp. π2 and σ2) are the restriction of p1 (resp. p2) to respectively X
and Γ (resp. X and Γ).
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Our problem in this context is to relate the multidegree of Φ with the geometry
of X. As we will explain, this is studying the difference between the symmetric
and the Rees algebras of IX and, in this perspective, this is a classical problem
of commutative algebra, see [Vas05] for an introduction to this point of view or
[BCJ09] and [BCS10] for results in this direction.

Chapter 1 is dedicated to explain the background and the framework of the
manuscript in a more detailed way and to define the multidegree of rational maps.
In Chapter 2, we focus more precisely on the definition of the projectivization
P(IZ) of an ideal sheaf. We present also geometric properties of X.

In Chapter 3, we are especially interested in the resolution of the ideal IX.
Let us explain why. Define E as the image sheaf of the presentation matrix M in
(0.0.2). We call E the sheaf of relations of IZ . If E is locally free of rank n then X is
the zero locus of a global section s ∈ H0

(
Pn1 ×Pn2 , p∗1(E∨)⊗p∗2OPn2 (1)

)
. This gives to

the push forward p1∗ interesting cohomological properties with respect to a locally
free resolution of IX. For instance, if E is split as a direct sum of line bundles,
then X is a complete intersection in Pn1 × Pn2 . Hence the ideal sheaf IX is resolved
by the Koszul complex associated to the generators of IX (see Definition 2.2.5 for
the definition of the Koszul complex) and, as we will see, this implies that the
multidegree of X, which we call the naive multidegree of Φ, is computed by the
degree of the Chern classes of E . The result in Chapter 3 is that even if E is not
locally free, but assuming instead that Z = V(IZ) is zero-dimensional, IX has a
locally free resolution closed enough to a Koszul complex, namely:

Proposition 14. Assuming that Z = V(IZ) is zero-dimensional and denoting
P = Pn1 × Pn2 and ξ for the first Chern class of OP(0, 1), a locally free resolution of
IX reads

0 Gn+1 Gn . . . G2 G1 IX 0

where Gi =
i
⊕
j=1

p1 ∗ Tij ⊗OP(−jξ) when i ∈ {1, . . . , n} and Gn+1 = p∗1Tn ⊗OP(−ξ)

for some locally free sheaves Tij and Tn over Pn1 .

Chapter 6 is dedicated to the application of this result, namely, when Z is
zero-dimensional, the naive multidegree of Φ is still computed by the length of a
cosection of E (which are the analogues of Chern classes when E is not locally free).

More generally, Part II is dedicated to the applications of considering the
projectivization of the base ideal sheaf of a rational map. We emphasize that the
dichotomy between the case where E is locally free and the case it is not locally
free is structuring in our work and Part II reflects this dichotomy.

In Chapter 4 and Chapter 5, we focus on the case where E is locally free.
More precisely, in Chapter 4, we consider the case where E is split. As we will
explain, this is equivalent to the fact that IZ is the ideal of maximal minors of M ,
so Φ is a determinantal rational map. As we mentioned in Theorem 4, the mul-
tidegree of a Cremona map verifies the Cremona inequalities but it is not known
if given a sequence (d0, . . . , dn) verifying Cremona inequalities, there exists a Cre-
mona map Pn 99K Pn. In Chapter 4, we construct examples of rational map with
given multidegree by analysing the scheme X (or, equivalently by analysing the
matrix M). It is in this way that we tackle Problem A. Moreover, we construct
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birational maps Φ : P3
1 99K P3

2 whose inverses Φ−1 have the same algebraic degree
than Φ. For simplicity we call these maps n-to-n-tics by analogy with the more
common denomination cubo-cubic and quarto-quartic in degree 3 and 4. Recall
from Example 3 that the second multidegree d2 of Φ is the algebraic degree of
Φ−1. Hence n-to-n-tic maps are the maps with multidegree (1, n, n, 1). This work
is motivated by the two articles [Pan99] and [DH17]. One of our result in this topic
is as follows:

Proposition 15. Over P3, let Φ be the determinantal map defined by the 3 × 3
minors of the following matrix:

M =


x0 x2 + x3 x2

0x2 + x0x1x2 + x0x
2
3

3x0 + x1 x2 + 2x3 x2
1x3 + x1x2x3

x0 + x1 x2 x1x
2
2 + x0x1x3

x0 + 2x1 x3 x2
0x3 + x1x

2
3


then Φ is a quinto-quintic (i.e. has multidegree (1, 5, 5, 1)).

Chapter 5 and Chapter 6 deal with the case where the base locus Z is zero
dimensional. In the polar case, in addition to Milnor numbers, we can attach also
the Tjurina number to a 0-dimensional singularity of a projective hypersurface.

Definition 16. Let Z be the 0-dimensional singular locus of a hypersurface F =
V(f) of Pn and let z ∈ Z. Via a change of coordinates, suppose that z = (1 : 0 :
. . . : 0).

The local Tjurina number at z, denoted by τf (Z, z) is defined as

τf (Z, z) = length
(
Okn,z/(f[, (f[)1, . . . , (f[)n)

)
where (f[)i =

∂f[
∂xi

.

The global Tjurina number of F , denoted by τf (Z) of F , is the sum
∑
τf (Z, z)

over all z ∈ Z.

Milnor and Tjurina numbers have very close definitions and given the 0-dimen-
sional singular locus Z of a hypersurface F = V(f), they verify the inequality

τf (Z) ≤ µf (Z)

but, as we will see, this inequality is strict in general. Anticipating on Chapter 6,
we can sum up our work by a study of the number dn(Φf ) = (d− 1)n − τf which
we call the nth naive projective degree or naive topological degree and a study of
the difference µf (Z)− τf (Z).

In Chapter 5, we focus on the case of rational maps P2 99K P2. It is a result
following from [Har80] that E is locally free of rank 2. Let us explain also our
initial motivation for studying this problem. Let f ∈ k[x0, x1, x2] be a square free
polynomial of degree d and let I be the jacobian ideal sheaf of f , i.e. the ideal
sheaf generated by the partial derivatives fi = ∂f

∂xi
of f . Letting E be the sheaf of

relations of I, the curve F = V(f) is free if E is split (following the definition in
[Dim15]). If E is split and E ' OP2(−d1) ⊕ OP2(−d2) then F is said to be free of
exponent (d1, d2). A result of A.A. du Plessis and C.T.C.Wall in [dPW99] identifies
in particular complex curves F of a given degree d with maximal possible global
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Tjurina number (see Definition 16 for the definition of Tjurina numbers). These
are the free curves of exponents (1, d− 2).

But, as we will explain, the data of the global Tjurina number of F is equivalent
to the data of the second Chern class of E via the relation

c2(E) = (d− 1)2 − τf (Z).

Hence the identification of curves with the highest global Tjurina number is equiv-
alent to identifying the curves such that c2(E) is the smallest possible.

In Definition 2.2.21, we define a generalised Tjurina number for any ideal sheaf
I of P2 generated by three global sections of OP2(δ). This is just the length of the
scheme V(I). So for us, a main motivation is to elaborate a similar criterion to
split the sheaf of relations E . One result in this chapter is as follows:

Theorem 17. Let I be an ideal sheaf over P2 generated by three global sections
φ0, φ1, φ2 of OP2(δ) and let E be the sheaf of relations of I (recall that E is defined
as the kernel of the evaluation map O3

P2 → I(δ)). Then −c1(E) ≤ c2(E) + 1 and
equality holds if and only if E is free of exponents

(
1, c2(E)

)
.

We emphasize that Theorem 17 is precisely a generalisation of the former result
in [dPW99] since we identify free sheaves of exponents

(
1, c2(E)

)
with sheaves of

relations with the smallest second Chern class possible. The second part of this
chapter is the classification of the reduced complex plane curves with respect to the
second Chern class of their sheaf of relations, that is, we classify curves of degree
d and c2(E) = (d− 1)2 − τf .

In Chapter 6, we consider the case where Z is zero-dimensional. In this case
E is not locally free in general. Recall that the nth naive projective degree of Φ is

the length of the intersection of n general generators
n∑
i=0

λiφi of IZ where λi ∈ k

for any i ∈ {0, . . . , n} after removing the points already in Z (see Section 1.3).
Hence the nth projective degree of Φ is the length of the scheme V(s) defined

in the following exact sequence:

OnPn1 IZ(δ) OV(s) 0

where the morphism OnPn1 → IZ(δ) is general. Now consider this morphism in the
following commutative diagram:

0

OnPn1 OnPn1

0 E =
m
⊕
i=1
OPn1 (−ai) On+1

Pn1 IZ(δ) 0

OPn1 OV(s) 0

0 0

M

=
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So V(s) is also the support of the cokernel of the map E =
n
⊕
i=1
OPn1 (−ai) → OPn1 .

In other words, the class [V(s)] of V(s) in the Chow ring of Pn is the support of a
cosection of E .

The second way to compute this projective degree is to consider the projec-
tivization X of IZ in Pn1 × Pn2 and to compute its decomposition in the Chow ring
of Pn1 × Pn2 (see Section 1.2 for these definitions). The problem of this chapter is
to establish if those two ways of computing the naive projective degrees, namely
considering cosections of E or the projectivization X, always coincide even if E is
not locally free. We summarize our result as follow, see Theorem 6.1.1 for a more
precise statement.

Theorem 18. In the case when the base locus Z is 0-dimensional, the length of
the zero scheme of a cosection of the kernel E of the evaluation map On+1

Pn1
→ IZ(δ)

is equal to the nth naive projective degree.

We answer also positively Problem B and negatively Problem C and Problem D.

Proposition 19. The curve F = V
(
(x2

1 + x0x2)x0(x2
1 + x0x2 + x2

0)
)

is homaloidal
if and only if the base field k has characteristic 3, in which case the inverse of the
polar map is

Ψ = (x2
1x

2
2 + x0x

3
2 + x4

2 : −x3
1x2 − x0x1x

2
2 − x1x

3
2 : −x4

1 − x0x
2
1x2 + x0x

3
2)

Proposition 20. Let k be an algebraically closed field of characteristic 101.

(i) The curve V
(
z(y3 +x2z)

)
has polar degree 2 whereas V

(
z50(y3 +x2z)51

)
has

polar degree 1.

(ii) The curve V
(
(y3+x2z)(y2+xz)

)
has polar degree 5 whereas the curve V

(
(y3+

x2z)31(y2 + xz)4
)

has polar degree 3.

In Chapter 7, the goal is to provide a numerical way of computing the inverse
Φ−1 of a rational map Φ : Pn 99K Pn using the geometry of the projectivization X
of the base ideal sheaf IZ of Φ. We especially focus on finding the inverse of the
polar map of f = (x2

1 + x0x2)x0(x2
1 + x0x2 + x2

0) in characteristic 3.





Chapter 1

Degrees of rational maps

As we saw in the introduction, different degrees can be attached to a rational
map and in particular the projective degrees. In this chapter, before stating our
framework about rational maps, we will define these degrees. We end this chapter
by a refined presentation of the Cremona group and by answering negatively the
following problem (see Subsection 1.4.1 for its motivation).

Problem E. Is any Cremona map of P2, of algebraic degree stricly greater than
1, determinantal?

1.1 Proj of a sheaf

We mostly follow [Har77, II.7] for this background. We only come back to the
relative notion of Proj of a sheaf of graded OX -algebras and we refer to [Har77,
II.2] for the definition of the Proj of a ring R. The general setting is as follows:

(4)

X is a smooth quasi-projective variety and S is a positively graded
sheaf of graded OX -module which has a structure of a sheaf of graded
OX -algebras. Thus S ' ⊕d≥0Sd where Sd is the homogeneous part of
degree d. We assume that S0 = OX , that S1 is a coherent OX -module,
and that S is locally generated by S1 as an OX -algebra.

Construction. For each open subset U = Spec(A) of X, let SU be the graded
A-algebra Γ(U,SU ). Then, the schemes Proj(SU ) together with their morphisms
Proj S(U) → U glue to give a scheme ProjS together with a morphism π :
ProjS → X such that for each open affine U ⊂ X, π−1(U) ' Proj S(U). As
such, ProjS has an invertible sheaf O(1).

Example 1.1.1. Over X, let S be the polynomial algebra S = OX [y0, . . . , yn]. For
each open subset U = Spec(A) of X, SU is equal to A[y0, . . . , yn] so Proj SU = PnA.
The morphisms PnA → Spec(A) are those associated to the canonical morphisms
A→ A[y0, . . . , yn].

The scheme ProjS is denoted by PnX or X ×k Pnk .

Lemma 1.1.2. [Har77, II.7.9] Let S be a sheaf of graded algebras on X as in
(4). Let L be an invertible sheaf on X, and define a new sheaf of graded algebras

23
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S ′ = S ⊗ L by S ′d = Sd ⊗ Ld for each d ≥ 0. Then S ′ satisfies (4) and there
is a natural isomorphism φ : P ′ = ProjS ′ → P = ProjS, commuting with the
projections π and π′ to X, and such that

OP ′(1) = φ∗OP (1)⊗ π′∗L.

Definition 1.1.3. Let X be as in (4) and let G be a coherent sheaf on X. We
define the associated projective space bundle P(G) as follows. Let S = Sym(G) be
the symmetric algebra of G. It verifies S = ⊕d>0 Symd(G). Then S is a sheaf of
OX -algebras satisfying (4) and we define

P(G) = ProjS.

As such, it comes with a natural projection π : P(G)→ X.

Example 1.1.4. If G = On+1
X , then S = OX [y0, . . . , yn] and P(G) is PnX as in

Example 1.1.1. More generally, let G be a locally free coherent sheaf of rank n+ 1.
Given an open set U of X trivialising G, we have that π−1(U) ' PnU so P(G) is a
”relative projective space” over X.

Proposition 1.1.5. [Har77, II.7.11] Let X be as in (4), G be a locally free co-
herent sheaf over X and π : P(G)→ X be as in Definition 1.1.3. Then:

(a) if rankG ≥ 2, there is a canonical isomorphism of graded OX-algebras S '
⊕l∈Zπ∗

(
O(l)

)
, with the grading on the right hand side given by l. In partic-

ular, π∗
(
O(1)

)
= G,

(b) there is a natural surjective morphism π∗G → O(1).

1.2 Algebraic cycles and Chow rings

Let k be an algebraically closed field and let X be any variety over k i.e. here
integral separated scheme over a field k.

Definition 1.2.1. A cycle of codimension r on X is an element of the free abelian
group Zr(X) generated by the closed irreducible subvarieties of X of codimension
r. So we write a cycle as Y =

∑
niYi where the Yi are closed subvarieties of X of

codimension r. Sometimes it is usefull to speak of the cycle associated to a closed
subscheme. If Z is a closed subscheme of pure codimension r, let Y1, . . . , Yt be
those irreducible components of Z which have codimension r, and define the cycle
associated to Z to be

∑
niYi where ni is the length of the local ring OZ,Yi of the

general point ui of Yi on Z.

We suppose now that X is a smooth quasi-projective variety of dimension n.
We refer to [Har77, II.6 and A.1] for the precise definition of rational equivalence

on Z(X) =
n
⊕
r=0

Zr(X).

Definition 1.2.2. For each r, we let CHr(X) be the group of cycles of codimension
r on X modulo rational equivalence. We denote by CH(X) the graded group
⊕nr=0 CHr(X) and given Z a subvariety of X, we denote by [Z] its class in CH(X).

Note that CH0(X) = Z and that CHr(X) = 0 if r > n.
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We refer to [Har77, Axiom 1 to Axiom 11] and [Har77, Theorem 1.1] for the
properties and results making CH(X) into a graded ring, called the Chow ring of
X. The product is given by the intersection:

CHi(X)× CHj(X) CHi+j(X)

([Z1], [Z2]) [Z1 ∩ Z2]

assuming that Z1 ∩ Z2 has the expected dimension.

Proposition 1.2.3. [Har77, 2.0.1] Given n ∈ N\{0}, CH(Pn) ' Z[H]/(Hn+1)
where H is the class of any hyperplane. In other words, any subvariety of degree d
and codimension r in Pn is rationally equivalent to dHr.

Before applying the previous notions for multidegree, let us define the Chern
classes following [Har77, 3]

One properties of the intersection product on the Chow ring is as follows:

Property 1.2.4. [Har77, Axiom 11] Let E be a locally free sheaf of rank r on X,
let P(E) be the associated projective bundle and let ξ ∈ CH1

(
P(E)

)
be the class of

the divisor corresponding to OP(E)(1). Let π : P(E)→ X be the projection. Then

π∗ makes CH
(
P(E)

)
into a free CH(X)-module generated by 1, ξ, ξ2, . . . , ξr−1.

Definition 1.2.5. Let E be a locally free sheaf of rank r on a nonsingular quasi-
projective variety X. For each i = 0, 1, . . . , r, we define the ith Chern class ci(E) ∈
CHi(X) by the requirement c0(E) = 1 and

r∑
i=0

(−1)iπ∗ci(E)ξr−i = 0

in CHr
(
P(E)

)
.

We refer to [Har77, C1 to C7] for the properties of the Chern classes but we
insist on one interpretation that we will use.

Proposition 1.2.6. [Har77, A.C6] Let E be a locally free sheaf of rank r on a
nonsingular quasi-projective variety X. If the dependency locus W , i.e. the common
zero locus, of t global section has codimension r− t+ 1 the class [W ] of W is equal
to cr−t+1(E) in CHr−t+1(E).

1.3 Rational maps

1.3.1 The general setting

Let us first give the following definition extracted from [Har77].

Definition 1.3.1. Let X,Y be varieties. A rational map Φ : X → Y is an
equivalence class of pairs 〈U,ΦU 〉 where U is a nonempty open subset of X, ΦU is
a morphism of U to Y , and where 〈U,ΦU 〉 and 〈V,ΦV 〉 are equivalent if ΦU and
ΦV agree on U ∩ V .
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When the target variety Y is the projective space Pr we have the following
setup (as a convention, we emphasize that given a vector space V , we denote by
P(V ) the space of hyperplanes of V ). Let n = dim(X), L be a line bundle over X
and V be a non-zero vector subspace of H0(X,L). We can define a rational map
ΦU on X by sending a point x ∈ X to the hyperplane Hx = {s ∈ V, s(x) = 0}
where s(x) is the evaluation of the section s at the point x. Of course, this map
is only defined over the points x such that there exists s ∈ V verifying s(x) 6= 0.
The open subset U over which the map ΦU is defined is precisely the set of these
points. Given the basis (φ0, . . . , φr) of V, we see that Φ sends a point x ∈ X at
which it is defined to the point

(
φ0(x) : . . . : φr(x)

)
∈ P(V) ' Pr. Conversely,

given a rational map Φ : X 99K Pr, we can find a representative 〈U,ΦU 〉 of Φ such
that codim(X\U) > 1. Then 〈U,ΦU 〉 defines a line bundle LU over U extending
in a unique way on X (see also [Dol11, 7] for this construction).

Consider the natural evaluation map of sections of L, ev′ : V⊗OX → L. It is
equivalent to

ev : V⊗L∨ → OX.

The image of ev is a sheaf of ideals IZ in OX , called the base ideal. Its support
Z = V(IZ) is a closed subscheme in X called the base locus of Φ. So letting
Di = V(φi) the scheme of zeros of the section φi for i ∈ {0, . . . , r}, we have that Z
is the scheme theoretic intersection D0 ∩ . . . ∩Dr in X.

Definition 1.3.2. Let Φ : X 99K Pr be a rational map with base locus Z and
denote U = X\Z so that the representative ΦU : U → Pr of Φ is a morphism.
The closure of ΦU in Pr does not depend on the representative of Φ and is called
the image of Φ, denoted by Im(Φ). Given also a closed subvariety W of Pr, the
closure in X of the inverse image Φ−1

U (W ), denoted by Φ−1(W ) is called the inverse
transform of W under Φ.

Definition 1.3.3. Let Φ : X 99K Pr be a rational map and let Y be the image
variety of Φ. Denoting Z the base locus of Φ and U = X\Z, the graph Γ of Φ is
defined as the closure

{
(
x,Φ(x)

)
, x ∈ U} ⊂ X × Y

of the graph of the morphism ΦU : U → Y in X × Y (it does not depend on the
representative of Φ).

Since dominant rational maps Φ : X 99K Y and Ψ : Y 99K X can be composed,
we are especially interested in the case when this composition has the identity map
as representative.

Definition 1.3.4. Let X be a quasi-projective variety over a field k and let Φ :
X 99K Pr be a rational map with its image variety Y ⊂ Pr. Denoting k(X) (resp.
k(Y )) the field of fraction of X (resp. Y ), Φ defines a morphism Φ∗ : k(Y )→ k(X)
and Φ is birational if Φ∗ is an isomorphism. This is equivalent to the fact there
exist a rational map Ψ : Y 99K X such that the compositions Φ ◦ Ψ = idY and
Ψ ◦ Φ = idX as rational maps.
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1.3.2 Construction with homogeneous polynomials

Our main source of examples and applications come from the situation where
X = Pn and r = n. In this case, every line bundle L is isomorphic to OPn(δ) for
an integer δ where OPn(δ) is a line bundle with the property that H0

(
Pn,OPn(δ)

)
is isomorphic to the space k[x0, · · · , xn]δ of homogeneous polynomials in n + 1
variables of degree δ. Hence we can identify the sections φi ∈ H0(L,OPn(δ)) with
homogeneous polynomials of degree δ. Now, letting V be an n+1 dimensional sub-
space of H0(L,OPn(δ)), a rational map Φ between two projective spaces Pn and Pr
over a field k, denoted Φ : Pn 99K Pn, is the data of n+1 homogeneous polynomials
φ0, . . . , φn ∈ k[x0, · · · , xn] of the same degree δ without common component.

Given Φ : Pn1 99K Pn2 and another rational map Ψ : Pn2 99K Pn3 defined by
n + 1 homogeneous polynomials ψ0, . . . , ψn ∈ k[y0, . . . , yn] such that Im(Φ) is not
contained in the base locus of Ψ (this is the case for instance if Φ is dominant),
the composition Ψ ◦ Φ of Φ and Ψ is the map from Pn1 to Pn3 defined by the
polynomial ψ0(φ0, . . . , φn), . . . , ψn(φ0, . . . , φn) where we substitute the variables
yi by the polynomials φi.

We saw in Example 1 that there a preferred representative of rational map of
Pn, this motivates the following comment.

Remark 1.3.5. Given a rational map Φ : Pn 99K Pn, we may always consider
that the map is defined by polynomials φ0, . . . , φn without common factor. This
is requiring that the codimension of the base locus Z = {φ0 = . . . = φn = 0} is
greater than 1.

1.3.3 Multidegree of a rational map and cycles in a Segre
product

We present first the topological degree. Let Φ : X 99K Y be a dominant rational
map between two irreducible varieties X and Y of the same dimension over an
algebraically closed field k. This situation corresponds to a field extension Φ∗ :
k(Y )→ k(X) between the respective fraction fields of X and Y .

Definition 1.3.6. The topological degree of Φ is the degree

dt(Φ) = [k(X) : k(Y )]

of the field extension of k(X) over k(Y ).

From Definition 1.3.4, we have the following relation between topological degree
and rationality.

Proposition 1.3.7. The map Φ is birational if and only if dt(Φ) = 1.

Given that Φ : X 99K Y is dominant between two varieties of the same dimen-
sion over an algebraically closed field k, we explain now a geometric interpretation
of the topological degree following [Har92, 7.16].

Proposition 1.3.8. The topological degree dt(Φ) of Φ is equal to the number of
points in a general fibre of Φ, i.e. the inverse transform of a general point of Y
under Φ.
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Proof. First we can assume that X and Y are affine open subsets since the content
of the proposition is local. So we can assume that X ⊂ An and Y ⊂ Am and Φ is
the projection from the graph Γ ⊂ An × Am of Φ on Y which is the restriction of
a linear projection An × Am → Am to Γ.

It is thus enough to prove the claim for a map Φ : X 99K Y of affine varieties
given as the restriction of the projection

p : An An−1

(x1, . . . , xn) (x1, . . . , xn−1)

In this case the fraction field k(X) of X is generated over k(Y ) by the element
xn. Since X and Y have the same dimension and Φ is dominant, xn is algebraic
over k(Y ). Thus, let ai ∈ k(Y ) for i ∈ {0, . . . , d} such that

G(x1, . . . , xn) = a0(x1, . . . , xn−1)xdn + a1(x1, . . . , xn−1)xd−1
n + . . .

is the minimal polynomial satisfied by xn (so [k(X) : k(Y )] = d). After clearing
denominators, we may take the ai to be regular functions on Y i.e. polynomials in
x1, . . . , xn−1.

Let ∆(x1, . . . , xn−1) be the discriminant of G as a polynomial in xn. Since G
is reduced in k(Y )[xn] and k is algebraically closed, ∆ cannot vanish identically on
Y . It follows that the loci {a0 = 0} and {∆ = 0} are proper subvarieties of Y and,
on the complement of their union, the fibres of Φ consist of exactly d points.

Example 1.3.9. To illustrate Proposition 1.3.8 we explain the following compu-
tational way to determine the topological degree of a rational map Φ : Pn1 99K Pn2
given by n+ 1 homogeneous polynomials φ0, . . . , φn in n+ 1 variables each one of
degree δ and such that dimV(φ0, . . . , φn) ≤ n− 2. Here we let Pn1 and Pn2 be two
projective spaces of dimension n over k with respective coordinates x0, . . . , xn and
y0, . . . , yn.

(1) The first step is to take a general point in Pn2 . By Bézout’s theorem, this is
the same as the choice of n general hyperplanes H1, . . . ,Hn in Pn2 intersecting
precisely at this point. In the following, we let:

Hi : ai0y0 + . . .+ ainyn = 0

be the equations of the hyperplanes Hi. Computationally, one often works
with a finite fields or even prime fields Z/pZ. Under many points of view,
this is a good approximation of infinite fields and even of algebraically closed
fields if the prime number p is big enough. Over finite fields, ”random” means
that all elements of the field have the same probability of being chosen.

(2) It remains to compute the fibre Fy of the point y in the intersection ∩iHi.
Let us remark that the fibre {x ∈ Pn1 , Φ(x) = y} of y is contained in the
intersection ∩iΦ∗Hi where Φ∗Hi are hypersurfaces of Pn1 given by the equa-
tions:

Φ∗Hi : ai0φ0 + . . .+ ainφn = 0.
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Actually, if for any x ∈ Pn1 there exists i ∈ {0, . . . , n} such that φi(x) 6= 0
then x is in the fibre of y. This is just saying that Φ(x) is well defined (x is
not in the base base locus of Φ) and that y is the only point in the intersection
∩iHi.

(3) The fibre of y is in general strictly contained in ∩iΦ∗Hi since the latter scheme
contains also the base locus Z = V(φ0, . . . , φn) of Φ. The computational step
consisting in removing Z from ∩iΦ∗Hi is the saturation

IFy = [IH : I∞Z ] = ∪
i≥1

[IH : IiZ ]

where IH is the ideal of ∩iΦ∗Hi, IZ is the ideal of Z and

[IH : IiZ ] = {r ∈ k[x0, . . . , xn], ∃f ∈ IiZ , rf ∈ IH}

is the ideal quotient of IH by IiZ [Eis95, Page 15]. Indeed the saturation of
an ideal I with respect to an ideal J corresponds to consider all the primary
components of I which are not contained in any infinitesimal neighbourhood
of V(J). We refer to [CLO07, 4.7 Primary Decomposition of Ideals] for the
definition of primary components of an ideal and [CLO07, 4.4 Zariski Closure
and Quotients of Ideals, Exercices 8 to 10] for the geometric meaning of the
saturation and its actual computation via Groebner basis algorithms. The
ideal IFy is then the ideal of the fibre Fy.

Now, we turn to the more general notion of multidegree of a rational map. Let
X be a smooth irreducible subvariety of Pn, Y be a smooth irreducible subvariety
of Pm and Φ : X 99K Y be a rational map from X to Y . We denote by Γ the graph
of Φ. The situation is summed up with the following commutative diagram:

Pn × Pm

Γ

Pn Pm

p1 p2

σ1 σ2

Φ

where p1 (resp. p2) is the first (resp. second) projection.

Proposition 1.3.10. [Dol00, 7.1.3] The Chow group of Pn × Pm is the tensor
product of the Chow group of Pn with the Chow group of Pm.

⊕
i,j≥0

CHi(Pn)⊗ CHj(Pm) '
n
⊕
i=0

m
⊕
j=0

Z⊗ Z,

Given i ∈ {1, 2}, we denote by hi the cycle class of p∗i (Hi) in CH(Pn × Pm)
where H1 (resp. H2) is the class of a hyperplane in Pn (resp. Pm). Each cycle of

Pn × Pm decomposes into a sum
n∑
i=0

m∑
j=0

dijh
i
1h
j
2.
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Definition 1.3.11. The multidegree of a subvariety G of dimension k in Pn×Pm is

the sequence of coefficients (d0, . . . , dk) in the decomposition of [G] =
k∑
i=0

dih
i
1h
k−i
2 .

Definition 1.3.12. The multidegree of a rational map Φ : X 99K Y with X ⊂ Pn
and Y ⊂ Pm is the multidegree of the graph Γ of Φ in Pn × Pm. Since dim(Γ) =
dim(X), we decompose [Γ] as follows:

[Γ] =

k∑
i=0

dih
i
1h
k−i
2 .

The coefficient di is called the ith projective degree of Φ .

Remark 1.3.13. As defined in the generality of Definition 1.3.12, the nth pro-
jective degree dn(Φ) of a rational map Φ does not recover completely the first
definition of topological as degree of the general fibre and we illustrate why in the
following example.

Let C be the image in k3 of the map

φ : k k3

x0 (x0, x
2
0, x

3
0)

C is actually a smooth rational cubic curve usually called a twisted cubic. In
homogeneous coordinates, C is the image of the map

Φ : P1 P3

(x0 : x1) (x3
0 : x2

0x1 : x0x
2
1 : x3

1)

This latter map is birational onto its image C so dt(Φ) = 1 with respect to
Definition 1.3.6. However the cycle class of the graph ΓΦ of Φ in the Chow ring of
P1 × P3 is:

[ΓΦ] = (h1 + h2)3 = 3h1h
2
2 + h3

2

where h1 = p∗1H1 (resp. h2 = p∗2H1) is the cycle class of the pull back of a
hyperplane of P1 (resp. P3) and where p1 : P1×P3 → P1 (resp. p2 : P1×P3 → P3)
is the first projection (resp. second). Hence d1(Φ) = 3, the degree of C in P3. For
more precision about this justification and the cycle class of a variety in P1 × P3

we refer to Section 1.2.
Our justification to maintain Definition 1.3.12 is that our results concern dom-

inant rational maps Φ : X 99K Pn where the definition of nth projective degree and
topological degree coincide.

More generally, with the previous notation, suppose that Φ is dominant over Y
and that dim(X) = dim(Y ) = k. Then

Proposition 1.3.14. Let Φ : X 99K Y be a rational map and let fix the embedding
X ⊂ Pn and Y ⊂ Pm. Then

dk(Φ) = deg(Y )dt(Φ).
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i.e. the topological degree dt(Φ) of Φ is the kth projective degree of Φ divided by the
degree of Y in Pm.

Remark 1.3.15. With the notation as in Definition 1.3.12, let i ∈ {0, . . . , k} and
let Hi

1 be a general (n − i)-plane of Pn1 , Hk−i
2 be a general (m − k + 1)-plane of

Pm2 . Then if the intersection Hi
1 ∩ Φ−1(Hk−i

2 ) is reduced and 0-dimensional, the
ith projective degree di(Φ) of Φ is:

di(Φ) = card
(
Hi

1 ∩ Φ−1(Hk−i
2 )

)
where, by convention, we set H0

1 = Pn and H0
2 = Pm.

1.4 The Cremona group

Definition 1.4.1. Given an integer n ≥ 1, a rational map Φ : Pn 99K Pn of
topological degree dn(Φ) = 1 is called a Cremona map.

Definition 1.4.2. Given n ≥ 1, the set of all Cremona maps of Pn has a structure
of group with respect to the composition law of rational maps. We call this group
the Cremona group of Pn, denoted by Bir(Pn).

1.4.1 First properties of the Cremona group

There are a lot of questions and results about the Cremona group. We restrict our
presentation to the foundational result of Noether and Castelnuovo establishing
that the Cremona group Bir(P2

C) over the complex field has a remarkable set of
generators. We define first the projective automorphisms of Pn.

Definition 1.4.3. Let n ≥ 1, to any matrix A = (aij)0≤i≤n,0≤j≤n ∈ PGln+1, we

can associate a birational map sending (x0 : . . . : xn) ∈ Pn to (
n∑
j=0

a0jxj : . . . :

n∑
j=0

anjxj), the inverse being the map associated to A−1. Such a map is called a

projective automorphisms of Pn.

Theorem 1.4.4. (Castelnuovo-Noether’s theorem) The Cremona group Bir(P2
C) is

generated by the projective automorphisms of P2 and the standard Cremona map
τ = (x1x2 : x0x2 : x0x1)

We refer to [Dol11, 7.5] for a proof of this result.

Example 1.4.5. Let

Φ : P2 P2

(x0 : x1 : x2) (x2
0 : x0x1 : x2

1 − x0x2).

It is an involution, i.e. Φ ◦ Φ = id and we can compute that

Φ = A4 ◦ τ ◦A3 ◦ τ ◦A2 ◦ τ ◦A1
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where A4 =

0 1 0
0 1 −2
1 1 0

, A3 =

4 0 1
1 1 0
0 1 0

, A2 =

1 1 0
0 −1 0
0 0 1

,

A1 =

 1
2

1
2 0

1
2 − 1

2 0
0 0 1

 and τ = (x1x2 : x0x2 : x0x1).

An output of Theorem 1.4.4 is that Bir(P2
C) has a rather simple set of generators.

This no longer true when n ≥ 3 as stated by the following result.

Theorem 1.4.6. [Pan99] When n ≥ 3, the Cremona group Bir(PnC) cannot be
generated by a set of Cremona maps of bounded degree.

Determinantal rational maps

Let n ≥ 1 and M be a matrix of size (n + 1) × n whose entries are homogeneous
polynomials in k[x0, · · · , xn] and such that all the entries of one given column have
the same algebraic degree. Then the n × n-minors of M define a rational map of
Pn.

Definition 1.4.7. Given n ≥ 1 and M ∈ Matn+1,n(k[x0, · · · , xn]) with homo-
geneous entries, a rational map defined by the n × n-minors of M is called a
determinantal rational map. If this map is birational we call it a determinantal
Cremona map.

Example 1.4.8. Over k[x0, x1, x2], let Φ be the determinantal rational map de-
fined by the 2× 2-minors of

M =

x0 x1x2

x1 x2
0

0 x0x2

 .

That is, the map Φ is represented by the polynomials

(x3
0 − x2

1x2, x
2
0x2, x1x0x2)

and is actually a Cremona map of P2 whose base locus Z is supported over the
points (0 : 0 : 1) and (0 : 1 : 0). Its inverse Φ−1 is defined by the polynomials

(−x0x
2
1 − x1x

2
2,−x0x1x2 − x3

2,−x3
1)

which are the 2× 2-minors of the matrix

M ′ =

−x2 −x2
1

x1 0
0 x0x1 + x2

2

 .

In P2, it is remarkable that all Cremona maps of algebraic degree 2 are actually
determinantal. Such a result follows from the classical description of Cremona
map of algebraic degree 2 (see [Dés12]). When looking at a list of Cremona maps
of algebraic degree 3 such as in [Dés12, 4.6], we compute that the first members
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of the list are also determinantal. Since the standard Cremona map τ is itself

determinantal as the 2×2-minors of the matrix

 x0 x0

0 x1

−x2 0

 and since τ is the only

generator of Bir(P2) of algebraic degree not equal to 1, we end up with Problem E.
The answer is negative as illustrated by the following map Φ in Proposition 1.4.9

which is the composition the map defined by the 2× 2-minors of the matrixx1x2 x0x2

x0x2 x0x1

x0x1 x1x2


and the standard Cremona map τ = (x1x2, x0x2, x0x1).

Proposition 1.4.9. The map Φ : P2 99K P2 defined by the polynomials
φ0 = x3

0x
2
1 − x0x

3
1x2 − x2

0x1x
2
2 + x2

1x
3
2

φ1 = −x2
0x

3
1 + x3

0x1x2 + x0x
2
1x

2
2 − x2

0x
3
2

φ2 = −x2
0x

2
1x2 + x3

0x
2
2 + x3

1x
2
2 − x0x1x

3
2

is a Cremona map of P2 which is not determinantal.

Proof. We introduce several tools that we will use in the next chapters. Over the
coordinate ring R = k[x0, x1, x2] of P2, we let IZ = (φ0, φ1, φ2). Of course the base
ideal sheaf IZ of Φ defined in the first section is just the sheafification of IZ . Now
consider a minimal free presentation of IZ

F R3 IZ 0M (1.4.1)

where F is a free R-module and M is the presentation matrix of IZ . Since the base
locus Z of Φ is assumed to be of codimension strictly greater than 1, the Hilbert-
Burch theorem [Eis95, 20.15] states precisely that rank(F ) = 2 if and only if IZ is
generated by the 2× 2-minors of M . But in our case, a minimal free presentation
of IZ actually reads

R3 R3 IZ 0M (1.4.2)

and

M =

x0x
2
1 − x2

0x2 x2
1x2 − x0x

2
2 0

x2
0x1 − x2

1x2 0 −x2
0x2 + x1x

2
2

0 x0x
2
1 − x1x

2
2 x2

0x1 − x0x
2
2

 .

Hence Φ is not determinantal and it is a computation, for example using the algo-
rithm we explained in Example 1.3.9 that Φ is birational.

i1 : k = QQ

o1 = QQ

o1 : Ring
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i2 : R = k[x_0..x_2]

o2 = R

o2 : PolynomialRing

i3 :

I = ideal(x_0^3*x_1^2-x_0*x_1^3*x_2-x_0^2*x_1*x_2^2+x_1^2*x_2^3,

-x_0^2*x_1^3+x_0^3*x_1*x_2+x_0*x_1^2*x_2^2-x_0^2*x_2^3,

-x_0^2*x_1^2*x_2+x_0^3*x_2^2+x_1^3*x_2^2-x_0*x_1*x_2^3);

o3 : Ideal of R

i4 : J = ideal ( (gens I)*random(R^{3:1},R^{2:1}) );

o4 : Ideal of R

i5 : degree saturate(J,I)

o5 = 1

hence the fibre of a general point has cardinal 1 so the topological degree of Φ is 1.

Remark 1.4.10. Let us explain why we restrict Problem E to birational maps of
P2 of degree stricly greater than 1. It is because the minimal free resolution of the
base ideal IZ of any projective automorphism of P2 reads

0 R R3 R3 IZ 0.

Indeed, Z beeing empty, the three generators of IZ are a regular sequence (see
Definition 2.2.2) so IZ is resolved by the Koszul complex associated to the three
generators of IZ (see Definition 2.2.5). Hence any projective automorphism of P2

is not determinantal.
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Projectivization of an ideal sheaf
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Chapter 2

Torsion of the symmetric algebra

In this chapter, we consider a smooth quasi-projective variety X. Recall from
Subsection 1.3.1 that a rational map Φ : X 99K Pn defines an ideal sheaf IZ which
is the image of the evaluation morphism V⊗OX → L, where L is a line bundle
over X and V is the subspace of global sections of L defining Φ.

The main idea here is to consider the projectivization P(IZ) of IZ . A locally
free presentation of IZ determines an embedding of P(IZ) in PnX . Since P(IZ)
contains also the blow-up X̃ of X along Z = V(IZ), the birationality of Φ and,
more generally, the multidegree of Φ, defined over X̃, can be studied in terms of
the properties of P(IZ) (see Subsection 1.3.3 for the definition of the multidegree).
A locally free presentation of an ideal sheaf IZ generated by n+ 1 global sections
(φ0, . . . , φn) of a line bundle L is the data of an exact sequence:

F V⊗OX IZ ⊗ L 0
M

(
φ0 . . . φn

)

where F is locally free. The matrix M is called a presentation matrix of IZ . Since
our applications concern mostly rational maps Φ : Pn1 99K Pn2 , we emphasize that,
in this case, we identify the sections φi with their corresponding homogeneous
polynomials in R = k[x0, · · · , xn] (with Pn1 = Proj(R)) of the same degree δ and
that the ideal sheaf IZ is then the sheafification of the ideal IZ generated by
polynomials φ0, . . . , φn over R. With this identification a presentation of IZ is
then the sheafification of a presentation of IZ

F Rn+1 IZ 0
M

(
φ0 . . . φn

)

where F is a free R-module. In this perspective, we can apply results from com-
mutative algebra and eventually make the computation with a computer algebra
system such as Macaulay2 to compute the free presentation of IZ and to infer
a presentation of IZ . As a matter of notation, we denote by M both a matrix
presentation of IZ and the sheafified map M̃ of M . The justification for this sim-
plification is that the entries of M can be identified with their corresponding global

sections which determine the map F M→ V⊗OPn1 where F is the sheafification of F .

37
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2.1 Projectivization and blow-up

In the following, we will use that the formation of the symmetric algebra commutes
with base change. Let us explain now what we mean by that.

Proposition 2.1.1. [Eis95, Proposition A.2.2] Let R be a ring, R′ be an R-algebra
and M be an R-module. Then there is a R-module isomorphism

Sym(M ⊗R R′) ' Sym(M)⊗R R′.

In our context, from a relative point of view, this implies that the localization
of the symmetric algebra of an ideal sheaf IZ is the symmetric algebra of the
localization of IZ .

Notation 2.1.2. Letting X and G be as in Definition 1.1.3 and given a subscheme
L of P(G) and any x ∈ X, we denote by Lx the scheme-theoretic fibre of the
projection π : P(G)→ X restricted to L above x.

2.1.1 Projectivization of an ideal sheaf

We consider now the special case of the projectivization of an ideal sheaf. Let X
be a smooth quasi-projective variety, let I be an ideal sheaf over X and let

Or+1
X I ⊗ L 0,

(φ0 ... φr)
(2.1.1)

be a surjection for some ample line bundle L on X. We have an embedding of
P(I ⊗ L) in PrX . Indeed, by [Bou70, A.III.69.4], the surjection Or+1

X → I ⊗L → 0
of (2.1.1) implies that Sym(Or+1

X ) surjects over Sym(I ⊗L) and that the kernel of
this latter surjection is generated by the kernel of Or+1

X → I⊗L. Hence denoting F
the kernel of (φ0 . . . φr) in (2.1.1) and M the morphism F → Or+1

X , we have that
the ideal sheaf IP(I) of P(I) is locally generated by the entries of the row matrix(
y0 . . . yr

)
p∗M where y0, . . . , yr are the relative homogeneous coordinates of

PrX and p : PrX → X is the projection.
Now by Lemma 1.1.2, we have that P(IZ) ' P(IZ ⊗ L) and moreover that:

OP(IZ)(1) ' OP(IZ⊗L)(1)⊗ p∗L∨.

So we consider that P(IZ) itself is embedded in PrX . Let us summarize these
properties with the following proposition.

Proposition 2.1.3. Let X be a smooth quasi-projective variety, L be an ample
line bundle on X and let I be an ideal sheaf of X. A locally free presentation of
I ⊗ L,

F Or+1
X I ⊗ L 0M (φ0 ... φr)

(2.1.2)

determines a closed embedding of the projectivization X of IZ into PrX . The
ideal sheaf IX of X in PrX is locally generated by the entries of the row matrix(
y0 . . . yr

)
p∗M where y0, . . . , yr are the relative homogeneous coordinates of

PrX and p : PrX → X is the projection.
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Remark 2.1.4. In the following, except in the examples, we consider locally free
presentation

OmX ⊗ L∨ Or+1
X ⊗ L∨ I 0M (φ0 ... φr)

(2.1.3)

of I. In this case, the projectivization P(I) is embedded in P(Or+1
X ⊗ L∨). As

we saw in Lemma 1.1.2, this is still considering P(I) in PrX but with a modified
hyperplane class. This makes the redaction and verification of the proves easier.

We illustrate the previous notions with the following situation where the base
field k is any field.

Let IC = (x0x2 − x2
1, x0x3 − x1x2, x1x3 − x2

2) be the ideal sheaf over P3 given
by the 2× 2 minors of the matrix

M =

(
x0 x1 x2

x1 x2 x3

)
and denote those three minors by φ0, φ1, φ2. As we explained in Remark 1.3.13,
the subscheme C = V(IC) of P3 is a smooth rational curve called the twisted cubic.

We summarize this situation into the following exact sequence:

0 OP3(−1)2 O3
P3 IC(2) 0

tM (φ0 φ1 φ2)
(2.1.4)

Now, denoting by X the projectivization P
(
IC(2)

)
of IC(2), (2.1.4) determines

a closed embedding of X into P(O3
P3). Moreover, denoting P(O3

P3) by P3 × P2 with
variables xi (resp. yi) for the first (resp. second) factor, the ideal of IX of X in
P3 × P2 is generated by the entries in the row matrix

(y0 y1 y2)tM =
(
y0x0 + y1x1 + y2x2 y0x1 + y1x2 + y2x3

)
since by definition Im(tM) is the kernel of O3

P3 → IC(2)→ 0.
By computing the primary decomposition of IX, for example using basic func-

tions of Macaulay2, we deduce that X has codimension 2 in P3 × P2 and that it
is irreducible. Now, we study the fibres of the morphism π : X→ P3.

(i) If z /∈ C, then the localization IC,z of IC at z is equal to Oz. Since the
formation of the symmetric algebra commutes with base change (Proposi-
tion 2.1.1), the fibre Xz is isomorphic to {z}. Actually, over the open subset
U = P3\C, we show by the same argument that XU ' U since IU ' OU .

(ii) Now let z = (1 : 0 : 0 : 0) so tMz =

1 0
0 0
0 0

.

Hence, since the formation of the symmetric algebra commutes with base

change and since X has equation
(
y0 y1 y2

)t
M , the fibre Xz of z in X is

a line in P2
z.

As we are going to see in Subsection 2.1.2, X corresponds exactly here to the
blow-up of P3 along C.
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Another perspective

We emphasize the following point. Since IC is generated by the 2×2-minors of the

matrix M =

(
x0 x1 x2

x1 x2 x3

)
, the structure sheaf OC of C fits also in the following

exact sequence:

0 OP3(−3) OP3(−1)3 O2
P3 OC 0

 x2
2 − x1x3

−x1x2 + x0x3

x2
1 − x0x2


M

In this case, D = P
(
OC
)

is embedded in P(O2
P3) ' P3 × P1 and is a complete

intersection of three divisors of class c1
(
OP3×P1(0, 1)

)
in the Picard group of P3×P1.

Moreover, writing down explicitly those three divisors, we see that the fibre Dx
of D over a point x ∈ P3 is defined by the ideal

(y0x0 + y1x1, y0x1 + y1x2, y0x2 + y1x3)

thus:

(1) if x ∈ C (i.e. rank(Mx) = 1), dim(Dx) = 0,

(2) whereas if x /∈ C (i.e. rank(Mx) = 2), Dx is empty.

Hence π(D) is set theoretically equal to C. Actually, by definition of the structure
sheaf of the projectivization P(OC) of OC we have also that π∗(OD) = OC .

2.1.2 Blow-up of an ideal sheaf

We turn now to the study of the Rees algebra of an ideal sheaf following [Har77,
II.7]. Here, we explain how the data of the Rees algebra of the ideal sheaf of the
base locus of a rational map Φ is equivalent to the data of the graph Γ of Φ.

For the rest of the subsection, X is a smooth quasi-projective variety.

Definition 2.1.5. Let I be a coherent ideal sheaf on X.
Consider the Rees algebra

R(I) = ⊕d≥0Idtd ⊂ OX [t]

where Id is the dth power of the ideal I, and where we set I0 = OX . Then R(I)
satisfies (4). We call Proj

(
R(I)

)
the blow-up of X with respect to the coherent

sheaf of ideal I and we denote it by X̃.
If Z is the closed subscheme of X defined by I, then we also call X̃ the blow-up

of X along Z.

Example 2.1.6. Let X be the projective space P3 over any field k and let I be
the ideal sheaf associated to the ideal (x0, x1, x2). We denote also by z the point
V(x0, x1, x2) in P3. In this case the component Id of degree d of R(I) is generated
by all the monomials in x0, x1, x2 of degree d. In other words R(I) = ⊕d≥0Idtd

is isomorphic to k[x0, x1, x2] and the blow-up P̃3 with respect to I is equal to
X = P(I). So, as in Section 1.1, let:
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O3
P3(−1) O3

P3 I(1) 0

 0 x0 −x1

−x0 0 x2

x1 −x2 0

 (
x0 x1 x2

)

be a locally free presentation of I(1). By Lemma 1.1.2, P
(
I(1)

)
is isomorphic to

X so the ideal IX of X in P(O3
P3) ' P3 × P2 is equal to

(y0x1 − y2x0,−y0x2 + y2x0, y1x2 − y2x1).

We deduce from those equations, for example by computing its primary decom-
position with Macaulay2, that P̃3 is irreducible of dimension 3. Furthermore,
letting U = P3\{z}, we have that X̃U ' U and that σ−1({z}) is isomorphic to
P2
z ' {z} × P2.

The fact that S = ⊕d≥0Id is a sheaf of integral domains on X explains Item (a)
of the following proposition. We refer to [Har77, II.7.16] for the proof of Item (b)
and Item (c).

Proposition 2.1.7. Let I ⊂ OX be a non zero coherent sheaf of ideals on X, and
let σ : X̃ → X be the blowing-up with respect to I.

Then:

(a) X̃ is a variety,

(b) σ is a birational, proper, surjective morphism,

(c) if X is quasi-projective over k then X̃ is also, and σ is a projective morphism.

Now, let I be the base ideal sheaf of a rational map Φ = (φ0 : . . . : φn) : X 99K
Pn associated to an n+ 1-subspace V of H0(X,L) where L is a line bundle over X
as in Section 1.3. We denote by Z the base scheme V(I) in X.

Proposition 2.1.8. The blow-up σ : X̃ → X along Z is isomorphic to the graph
Γ of Φ embedded into PnX .

Proof. Let U = W\Z. The representative 〈ΦU , U〉 of Φ to U is a morphism. Hence
the graph ΓΦU ' U of ΦU is integral and its closure Γ in PnX is also integral.

Moreover Γ is a priori a subscheme of X̃. This follows from the universal
property of X̃ [Har77, II.7.14]. Hence, since X̃ is also integral and coincide with Γ
over U , by Proposition 2.1.7 (a), Γ and X̃ coincide.

Example 2.1.9. Let X be a smooth quasi-projective variety over k and let I =
(φ0, . . . , φn) be an ideal sheaf given by n+ 1 global sections of a line bundle L over
X. We denote by Φ : X 99K Pn the associated map.

Proposition 2.1.8 gives a first approximation to compute the equations of the
blow-up X̃ of X with respect to I. Indeed, in X×Pn with variables y in the second

factor, let K be the scheme given by the 2×2 minors of the matrix

(
φ0 . . . φn
y0 . . . yn

)
.

Since X̃ is isomorphic to the graph Γ of Φ by 2.1.8, we have that K contains X̃.
As we will see, K contains also the projectivization X of I.
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2.2 Symmetric algebra versus Rees algebra

We explain now the relation between the blow-up of a given (coherent) ideal sheaf
I on a smooth quasi-projective variety X and the projectivization P(I) i.e. the
relation between the Rees algebra of I and the symmetric algebra of I.

As in the previous section, X is a smooth quasi-projective variety, I is a coherent
ideal sheaf over X and we denote by X̃ the blow-up of X along I and by X the
projectivization of I.

Proposition 2.2.1. The blow-up X̃ is an irreducible component of X.

Proof. Denoting T (I) the tensor algebra associated to I and T n(I) its component
of degree n, let Qn : T n(I) → Intn be the surjection sending a pure tensor
x1 ⊗ . . . ⊗ xn ∈ T n(I) to x1 . . . xnt

n. It induces a surjection Q : T (I) → R(I)
whose kernel contains the symmetric relations, i.e. the subsheaf generated by all
the sums x ⊗ y − y ⊗ x. Hence Q induces a surjection R : Sym(I) → R(I). This
shows the injection X̃ ↪→ X at the Proj level. Since X̃ is integral by 2.1.7 (a) and
coincide with X over the complement of V(I) in X, X̃ is an irreducible component
of X.

Of course, the blow-up X̃ and the projectivization X are equal when the sur-
jection R : Sym(I) → R(I) is injective and we explain now a sufficient condition
when it is the case.

2.2.1 Local complete intersections

We define first regular sequences in the local case. Recall that given a module
M over a ring R, an element r ∈ R is called a nonzerodivisor if rm 6= 0 for all
m ∈M\{0}.

Definition 2.2.2. Let R be a noetherian ring and M an R-module. A sequence
of elements r0, . . . , rn ∈ R is called M-regular if:

(1) (r0, . . . , rn)M 6= M ,

(2) for i = 1, . . . , n, ri is a nonzerodivisor on M/(r1, . . . , ri−1)M .

When M = R, a R-regular sequence is simply called a regular sequence.

Example 2.2.3. With R = k[x0, x1, x2], the sequence
(
x0, (1− x0)x1, (1− x0)x2

)
is regular whereas

(
(1− x0)x1, (1− x0)x2, x0

)
is not.

Definition 2.2.4. Let R be a noetherian ring, M an R-module and I an ideal
of R. If IM 6= M , then by [Eis95, Theorem 17.4], the length of all maximal M -
regular sequences in I are the same. We define the depth of I on M , denoted by
depth(I,M), to be the length of any maximal M -regular sequence in I. If M = R,
we call just the depth of I, written depth(I).

One interest in regular sequences (r0, . . . , rn) lies in the remarkable structure of
the resolution of the module M = R/I where I is the ideal generated by r0, . . . , rn.
Namely the Koszul complex resolves I. We introduce the Koszul complex following
[Har77, III.7].
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Definition 2.2.5. Let R be a ring and r0, . . . , rn ∈ R. We define the Koszul
complex K•(r0, . . . , rn) as follows: K1 is a free R-module of rank n+ 1 with basis
e0, . . . , en. For each p = 0, . . . , n, Kp = ∧pK1. We define the boundary map
d : Kp → Kp−1 on the basis vectors:

d(ei1 ∧ . . . ∧ eip) =

p∑
j=1

(−1)j−1rijei1 ∧ . . . ∧ êij ∧ . . . ∧ eip

which verifies that dp ◦ dp−1 = 0 i.e. K•(r0, . . . , rn) is a complex of R-module. If
M is any R-modules, we set K•(r0, . . . , rn,M) = K•(r0, . . . , rn)⊗M .

The homology of the complex of R-modules K•(r0, . . . , rn,M) is called the
Koszul homology associated to the Koszul complex.

Proposition 2.2.6. [Har77, Proposition III.7.10A] Let R be a noetherian ring,
M an R-module and r0, . . . , rn a M -regular sequence, then:

Hi

(
K•(r0, . . . , rn,M)

)
= 0 for i > 0

and

H0

(
K•(r0, . . . , rn,M)

)
= M/(r0, . . . , rn)M

where Hi

(
K•(r0, . . . , rn,M)

)
is the ith homology module of the complex of R-

modules K•(r0, . . . , rn,M).

Example 2.2.7. Let R = k[x, y, z] and I be the ideal (x, y, z). The sequence
(x, y, z) is regular so the Koszul complex K•(x, y, z, R) is a free resolution of R/I.
Namely:

0 R R3 R3 I 0

xy
z

  0 z −y
−z 0 x
y −x 0

 (
x y z

)

is an exact complex.

We explain now how the notion of regular sequence is relevant when considering
Rees and symmetric algebra.

Proposition 2.2.8. If I = (x0, . . . , xn) ⊂ R is generated by a regular sequence,
then

R(I) ' Sym(I) ' R[y0, . . . , yn]/J

where J is generated by the 2× 2 minors of the matrix(
x0 . . . xn
y0 . . . yn

)
.

Proof. Since (x0, . . . , xn) is regular, the Koszul complex K•(x0, . . . , xn, R) resolves
R/I so I has the following presentation:
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R(n+1
2 ) Rn+1 I 0

(
x0 . . . xn

)
−x1 x2 0

x0 0

0 −x0
0 0

xn

0 0 −xn−1





where the presentation matrix is the second differential D2 of the Koszul complex.
Actually, the ideal generated by the row matrix (y0 . . . yn)D2 is the same as the

one generated by the 2 × 2 minors of the matrix

(
x0 . . . xn
y0 . . . yn

)
, D2 being the

presentation matrix of the ideal (x0, . . . , xn). Hence Sym(I) ' R[y0, . . . , yn]/J .
The proposition follows from the isomorphism Sym(I) ' R(I) implied by the fact
that a permutation in a regular sequence is a regular sequence (see [Eis95, 17.2]
and [EH00, Exercise IV-26] for a complete treatment of this last argument).

Example 2.2.9. In the case of an ideal I = (x, y) generated by a regular sequence
of length 2, we thus have

R(I) ' Sym(I) ' R[u, v]/(uy − vx).

As an illustration of Proposition 2.2.8, assume that I = (x0, . . . , xn) is generated
by n+ 1 elements of R and let

Rm Rn+1 I 0M

be a presentation of I. The generators of the symmetric algebra Sym(I) of I viewed
as a quotient of R[y0, . . . , yn] are the entries in the row matrix (y0 . . . yn)M as
we explained in Section 1.1. Hence if R(I) = Sym(I), the generators of R(I) are
linear in the y variables. This motivates the following definition.

Definition 2.2.10. [Vas05] Given a noetherian ring R and an ideal I over R, I is
said of linear type if R(I) = Sym(I).

2.2.2 Torsion of the symmetric algebra

Now, we determine the kernel of the surjection Sym(I)→ R(I).

Lemma 2.2.11. [Mic64] Let X be a smooth quasi-projective variety and let I be
an ideal sheaf over OX .

Then
R(I) = Sym(I)/T(I)

where T(I) is the torsion sheaf {u ∈ Sym(I), ∃r ∈ OX , ru = 0} of the symmetric
algebra.

Proof. Since the formation of the symmetric algebra and the Rees algebra com-
mutes with base change (see 2.1.1), we can assume that X is an affine scheme
Spec(A) with A a local ring. It is thus enough to show Lemma 2.2.11 for an ideal
I generated by φ0, . . . , φn over an integral noetherian ring A. As we explained in
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Subsection 2.1.1, by [Bou70, A.III.69.4], Sym(I) is isomorphic to A[y0, . . . , ym]/Q
where Q is the A-ideal generated by the linear polynomials b0y0 + . . .+ bmym such
that b0φ0 + . . .+ bmφm = 0.

Consider the surjection

A[y0, . . . , ym] R(I) = ⊕j≥0I
jtj .

yi φit

g :

First, Q ⊂ Q∞ = ker(g) and, since A is integral, the torsion module T(I) of
Sym(I) is also contained in Q∞/Q. Moreover, letting F ∈ A[y0, . . . , ym] and
F = F0 + F1 + . . . its decomposition into homogeneous polynomials, we have that
F ∈ Q∞ if and only if Fi ∈ Q∞ for any i. Moreover, any homogeneous polynomial
F is in Q∞ if and only if F (φ0, . . . , φn) = 0. Hence ker

(
Sym(I)→ R(I)

)
= Q∞/Q

which contains T(I). Now we show the reverse inclusion Q∞/Q ⊂ T(I), that is, for
all element f ∈ Q∞ there exist r ∈ A such that rf ∈ Q. We proceed by induction
on the degree δ of f .

If δ = 1, we have Q∞ = Q by definition of Q so given any f ∈ Q∞ of degree
1, 1 × f ∈ Q which shows the initialisation of the induction. Now, for any δ > 1,
suppose the result true for any P of degree δ − 1 and take f ∈ T(I). Write

f = y0f0(y0, . . . , yn) + y1f1(y1, . . . , yn) + . . .+ ynfn(yn)

and write h = y0f0(φ0, . . . , φn) + y1f1(φ1, . . . , φn) + . . . + ynfn(φn). Since h has
degree 1 in Q∞ it is in Q. Now write,

φδ−1
n f − yδ−1

n h = y0h0(y0, . . . , yn) + . . .+ yn−1hn−1(yn−1, yn)

for hi homogeneous of degree δ− 1 in Q∞. By the induction hypothesis, there are
ri ∈ R such that rigi ∈ Q. Then r = r0 . . . rn−1φ

δ−1
n ∈ R is an element such that

rf ∈ Q.

Geometric description of the torsion

We turn to the geometric point of view of Lemma 2.2.11. Let X be a smooth
quasi-projective variety and let I be an ideal sheaf on X. We denote by X the
projectivization of I with its structure map π1 : X→ X and by X̃ the blow-up of
X with respect to I and with structure map σ1 : X̃ → X. The images by π1 of the
irreducible components of X different from X̃ are contained in the support of Z.
Indeed, over the set U = X\Z, we have IU = OU , so that X̃ U = X U = π−1

1 (U).
This justifies the following definition:

Definition 2.2.12. An irreducible component of the projectivization X of I d-
ifferent from X̃ is called a torsion component of X. The union of the torsion
components is called the torsion part of X, denoted by TZ .

The following proposition provides a way to detect the torsion components of
X and to describe them with algebraic properties of Z.
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Proposition 2.2.13. Let x ∈ X be a closed point and let

P2 P1 IZ 0

E
0 0

M Φ

(2.2.1)

be a locally free presentation of IZ where P1 has rank n+1 and where E is the image
of M . The scheme-theoretic fibre Xx when equipped with its reduced structure is
isomorphic to Pn−rx where r = rank(Mx).

Proof. Since the formation of the symmetric algebra commutes with base change
(see 2.1.1), the fibre Xx is obtained by localizing X at x and taking P(IZ ⊗ kx),
where kx is the residue field of OX at x. Now tensor (2.2.1) by kx and observe
that the kernel Kx of the surjection Φx : P1⊗kx → IZ ⊗kx is a quotient of E ⊗kx,
which in turn is a quotient of P2 ⊗ kx. The composition of these surjections and
of the inclusion Kx → V is just the matrix Mx, so ker(Φx) = Im(Mx). Therefore
dim(IZ ⊗ kx) = n+ 1− rank(Mx), which completes the proof.

From a practical point of view, it might be difficult to determine how the fibres
(hence, as we will see, the torsion components) vary from a given presentation, as
illustrated by the following example:

Example 2.2.14. Consider the ideal I of A = k[x, y, z] generated by the 3 × 3-
minors φ0, . . . , φ3 of the matrix 

0 xz y2

0 x xy
x y y
y z x

 .

Since V(I) has the expected codimension 2 in Spec(A), we can apply the
Hilbert-Burch theorem (see [Eis95, 20.15] or Proposition 1.4.9 for this theorem)
to show that a minimal free resolution reads:

0 A3 A4 I 0


0 xz y2

0 x xy
x y y
y z x


(φ0 . . . φ3)

Hence, above the line {x = y = 0} in X = Spec(A), the fibre is {x = y = 0} × P2
k

but above the point {x = y = z = 0}, the fibre is {x = y = z = 0} × P3
k. Actually,

after computing the primary decomposition of the projectivization X of I with, for
instance, Macaulay2, these fibres are the torsion components of X.

Determinants and Fitting ideals

As we saw in the proof of Proposition 2.2.13, the location of the torsion components
is computed by the rank of the presentation matrix M motivating the following
definition.
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Definition 2.2.15. Let X be an algebraic variety and F , G be vector bundles on
X, of ranks f , g respectively. For any vector bundle map s : F → G and l ∈ N
verifying 0 ≤ l ≤ min{f, g}, the l’th degeneracy locus of s is the set

Xl(s) = {x ∈ X| rank s(x) ≤ l}.

Since a linear map has rank ≤ l if and only if all l+ 1-minors vanish, the set Xl(s)
can also be described as the zero locus of the section ∧l+1s ∈ H0(X, (∧k+1F)∨ ⊗
∧k+1G). As such, it comes with a natural structure as a closed subscheme of X.
We denote by Il(s) its associated ideal sheaf and we call it the ideal sheaf of minors
of size l of s by extension.

Proposition 2.2.16. [Eis95, 20.4] Let I be an ideal sheaf of the structure sheaf

OX of a quasi-projective variety X and let F s→ On+1
X → I → 0 and F ′ s′→

On
′+1
X → I → 0 be two presentations of I where F (resp. F ′) is locally free of

rank r (resp. rank r′).
Then, for each integer i ≥ 0, we have that In−i(s) = In′−i(s′).

This justifies the following definition.

Definition 2.2.17. We define the ith Fitting ideal of I to be the ideal sheaf

Fitti(I) = In−i(s)

for a given a presentation morphism s of I whose image has rank r.

We describe in more details the special case when I is generated by n + 1
global sections of a line bundle L, n being the dimension of X, and V(I) is zero-
dimensional in X. Let

F On+1
X I ⊗ L 0

s (φ0 . . . φn)

be a locally free presentation of I ⊗L. The map s can be interpreted dually as the
data of n+ 1 sections of F∨.

Proposition 2.2.18. Under the previous settings, the ideal sheaf Fittn−1 I is
the ideal sheaf generated by the common vanishing of these n + 1 sections and
V(Fittn−1 I) ⊂ Z = V(I).

Proof. Since rank(F) = n, Fittn−1 I is equal to the ideal sheaf I1(M) of the minors
1× 1 of M which means that it is generated by the common vanishing of the n+ 1
sections of F∨. The fact that V(Fittn−1 I) ⊂ Z = V(I) follows from [Eis95,
20].

Proposition 2.2.19. Let X be a smooth quasi-projective variety of dimension n
over k and let I be an ideal sheaf over X. Denoting Z = V(I), assume that
codim(Z) = n and that I ⊗ L is generated by n + 1 sections for some line bundle
L over X. Then the images of the torsion components of X in X are precisely
supported on the points of the subscheme V(Fittn−1 I). Moreover, each torsion
component is isomorphic to Pnk when equipped with its reduced structure.
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Proof. Since Z is zero-dimensional, any z ∈ Z is in an affine open set U = Spec(A)
of X over which L is trivial. So over U , let

OmU On+1
U I U 0

M
(
φ0 . . . φn

)
be a presentation of I.

Let z be a (closed) point of V
(
I1(M)

)
i.e. assume that M vanishes at z. Then

the fibre of the projection p : X → X is Pnz . This fibre is thus contained in the
reduced structure of an irreducible component of X which is distinct from the blow-
up X̃ of X with respect to I. It is therefore contained in a torsion component.
This in turn is clear as the restriction of p to X̃ is birational and the p X̃ -fibre at
any point has dimension at most n− 1. Hence, we have proved that any point in
V
(
I1(M)

)
lies in the image of a torsion component.

Conversely, take a (closed) point x ∈ X, put z = p(x) and assume that z lies
away from V

(
I1(M)

)
. First, if z /∈ Z then x lies in no torsion component, as all

such components map to the base locus Z. Then, if z ∈ Z, since the formation of
the symmetric algebra commutes with base change (2.1.1), up to localizing X at
z we may assume that X = Spec(A) with A regular local ring. Then, since z /∈
V
(
I1(M)

)
, by [Eis95, Proposition 20.6] we argue that I can be generated (locally

around z) by a regular sequence (ψ1, . . . , ψn). Therefore, by Proposition 2.2.8 we
have that R(I) = Sym(I) so that there is no torsion component in X. Clearly, this
implies that x does not belong to any torsion component.

Hence, the torsion part of X is supported over PnV(I1(M)) whose irreducible

components (i.e. the torsion components of X) are supported over Pnz for z ∈
V(I1(M)) since Z is 0-dimensional.

Notation 2.2.20. In the situation of Proposition 2.2.19, for every z ∈ Z, we let Tz
be the scheme-theoretic fibre of the restriction of π1 to TZ . By Proposition 2.2.19,
Tz is set-theoretically equal to Pnz so Tz = [Tz] · c1

(
OX(1)

)n
is a 0-cycle on X. We

denote by TZ the 0-cycle
∑
z∈Z

Tz.

Generalised Milnor and Tjurina numbers

Anticipating on Subsection 6.2.1 about the possible measures of the difference
between Rees and symmetric algebra, let us illustrate here a way to generalise
Milnor and Tjurina numbers (see Definition 8 and Definition 16 for their usual
definitions). So let X be a smooth quasi-projective variety of dimension n, I be
an ideal sheaf generated by n + 1 global sections of a line bundle L over X and
assume that Z = V(I) is zero-dimensional.

Definition 2.2.21. With notation as in Notation 2.2.20, for every z ∈ Z, put:

• τ(Z, z) = length(OZ,z)

• µ(Z, z) = τ(Z, z) + deg(Tz).

We let τ(Z) =
∑
z∈Z

τ(Z, z) and µ(Z) =
∑
z∈Z

µ(Z, z).
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The result is that, when X = Pn, and the n+ 1 sections are the partial deriva-
tives of a square free homogeneous polynomial f ∈ k[x0, . . . , xn], the numbers µ(Z)
and τ(Z) coincide with the usual Milnor and Tjurina numbers µf (Z) and τf (Z)
defined in Definition 8 and Definition 16.

Proposition 2.2.22. Let F = {f = 0} be a reduced hypersurface in Pn where f is
a homogeneous polynomial in k[x0, · · · , xn] of degree d and let I be the ideal sheaf
generated by the partial derivatives of f . Let z ∈ Z = V(I) then:

τ(Z, z) = τf (Z, z) and µ(Z, z) = µf (Z, z).

We postpone the proof of this result to Subsection 6.2.1.





Chapter 3

Resolution of the symmetric
algebra

Given a smooth quasi-projective variety X of dimension n and an ideal sheaf I
generated by n+ 1 global sections of a line bundle L over X, we saw in Chapter 2
that the equations of the projectivization X of I in PnX are determined by a locally
free presentation of I. Namely, letting

F On+1
X I ⊗ L 0

M

be a locally free presentation of I⊗L, the equations of X in PnX are the entries of the
row matrix

(
y0 . . . yn

)
M , where yi are the relative homogeneous coordinates

of PnX . If F has rank n then X is the intersection of n divisor. Hence if X has
dimension n the collection of entries in

(
y0 . . . yn

)
M is a regular sequence and

the resolution of the ideal IX of X in PnX is thus the Koszul complex associated
the sequence

(
y0 . . . yn

)
M , see Definition 2.2.5 for the definition of the Koszul

complex. This fact is of great interest for us since it implies the vanishing of
some higher direct image sheaves when pushing-forward the Koszul complex by the
projection map, as we will see. However, in greater generality, i.e. when rank(F) >
n, the Koszul complex does not resolve IX anymore. Our aim in this chapter is
to prove that, provided that V(I) is zero-dimensional, the resolution of IX keeps a
remarkable property which we call subregularity, see Definition 3.2.3. This property
insures that the same type of vanishing of higher direct image sheaves holds as in
the ”Koszul case”.

Let us present more precisely our motivation with the following example. We
refer to Section 1.2 and Subsection 1.3.3 for the associated definitions of Chow ring
and to Subsection 3.1.1, Subsection 3.1.2 and Subsection 3.1.3 for the definitions of
push-forward and Eagon-Northcott complex. This example is also a presentation
of the problem in Chapter 6.

Example 3.0.1. Let I be the ideal sheaf over OP2 generated by the 2× 2-minors

of the matrix M =

x0 x2
0

x1 x2
1

x2 x2
2

 so that a locally free resolution of I reads:

51
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0 OP2(−1)⊕OP2(−2) O3
P2 I(3) 0

and a locally free resolution of the projectivization X of I reads

0 OP(−3,−2) OP(−1,−1)⊕OP(−2,−1) OP OX 0,

where P = P2 × P2 = P(OP2 [y0, . . . , yn]) and where we write to the left the shift
in variables x0, . . . , xn and right the shift in the variables y0, . . . , yn. The naive
projective degree d2 of Φ is by definition the coefficient of h2

1 in the decomposition
of X in the Chow ring of P and where h1 is the pull back of the hyperplane class
of the first factor of P (see Definition 4.1.1 for the definition of naive projective
degrees). In this case, the decomposition of X reads:

[X] = (h1 + h2)(2h1 + h2) = 2h2
1 + 3h1h2 + h2

2

since X is complete intersection and we have that d2 = 2.
Equivalently, the naive projective degree d2 is the length of the scheme W

defined as the support of the cokernel of a general map O2
P → OX(0, 1) i.e. we have

the following exact sequence:

O2
P OX(0, 1) OW (0, 1) 0. (3.0.1)

Let p1 : P→ P2 be the first projection. As we will explain in Subsection 3.1.1, we
can push forward by p1 the sequence (3.0.1) to obtain the exact sequence

p1∗O2
P p1∗OX(0, 1) p1∗OW (0, 1). (3.0.2)

In this sequence, we have that p1∗O2
P ' O2

P2 . Now let tentatively assume that
p1∗OX(0, 1) ' I(3) and that the last map in (3.0.2) is surjective. As we will see
this is not an obvious fact. Then we have the following exact sequence

O2
P2 I(3) p1∗OW (0, 1) 0

The length of p1∗OW (0, 1) is actually the length of a general cosection of the
image sheaf E of the presentation matrix M . So provided that p1∗OX(0, 1) ' I(3)
and that the last morphism in (3.0.2) is surjective, we can compute the 2nd naive
topological degree on X. As we will explain, the two assumptions are verified since,
under our hypothesis, the resolution of X over OP is subregular (the verification of
these two assumptions is precisely the problem of Chapter 6).

3.1 Algebraico-geometric background

3.1.1 Cohomological results about direct image sheaves

For this background about direct image sheaves, in particular about right derived
functors, we refer to [Har77, III.1 Derived functors].
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Definition 3.1.1. Let p : X → Y be a continuous map of topological spaces. For
any sheaf of abelian groups F on X, the direct image sheaf p∗F on Y is the sheaf
defined by p∗F(V ) = F

(
f−1(V )

)
for any open set V ⊂ Y .

Note that p∗ is a functor from the category Ab(X) of sheaves of abelian groups
on X to the category Ab(Y ) of sheaves on Y . Actually, p∗ is left exact meaning
that p∗ sends any exact sequence:

0 F ′ F F ′′ 0 (3.1.1)

to the exact sequence

0 p∗F ′ p∗F p∗F ′′.

Moreover, Ab(X) has enough injectives, see [Har77, III.1]) so we can state the
following definition:

Definition 3.1.2. Let p : X → Y be a continuous map of topological spaces.
Then the higher direct image functors Rip∗ : Ab(X)→ Ab(Y ) is the right derived
functors of p∗.

For us the main use of the derived theory is as follows. The push forward of
(3.1.1) gives by definition the long exact sequence:

0 p∗F ′ p∗F p∗F ′′ R1p∗F ′ R1p∗F
R1p∗F ′ . . . Rip∗F ′ Rip∗F Rip∗F ′ . . .

where each of the sheaves involved can be computed thanks to the cohomology of
F , F ′ and F ′′. More precisely:

Proposition 3.1.3. [Har77, III.8.5] Let X be a noetherian scheme, and let p :
X → Y be a morphism from X to an affine scheme Y = Spec(A). Then for any
quasi-coherent sheaf F on X, we have

Rip∗(F) ' Hi(X,F)∼.

The gain is that, in our context, we can compute the cohomology of sheaves
thank to the two following theorems.

Theorem 3.1.4. [Har77, III.2.7] Let X be a noetherian topological space of di-
mension n. Then for all i > n and all sheaves of abelian groups F on X, we have
Hi(X,F) = 0.

Theorem 3.1.5. [Har77, III.5.1] Let A be a noetherian ring, and let X = PnA with
n ≥ 1 be the projective space of dimension n over A. Then:

(a) Hi
(
X,OX(r)

)
= 0 for 0 < i < n and all r ∈ Z,

(b) Hn
(
X,OX(−n− 1)

)
' A,
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(c) the natural map

H0
(
X,OX(r)

)
×Hn

(
X,OX(−r − n− 1)

)
→ Hn(X,OX(−n− 1)

)
' A

is a perfect pairing of finitely generated free A-modules, for each r ∈ Z.

The last theorem is important because, most of the time, our framework is to
have a product and two projections as in the following diagram:

X × Pn

X Pn
p1 p2

where X is a quasi-projective variety. In this setting, we consider push forwards
p1∗(p

∗
1F ⊗ p∗2G) for F a locally free sheaf of OX -modules and G a locally free sheaf

of OPn -modules and we compute the right derived functors Rip1∗(p
∗
1F ⊗ p∗2G) with

the following result.

Proposition 3.1.6. Let X be a quasi projective variety and consider the product
X × Pn as in the previous diagram. Then, given a locally free sheaf F of OX-
modules and G a locally free sheaf of OPn-modules, we have:

Rip1∗(p
∗
1F ⊗ p∗2G) = F ⊗Hi(Pn,G)

Proof. First we use the projection formula [Har77, Ex.8.3] stating that

Rip1∗(p
∗
1F ⊗ p∗2G) = F ⊗ Rip1∗p

∗
2G

We show now that Rip1∗p
∗
2G = Hi(Pn,G) ⊗ OX . So we consider the following

cartesian square

X × Pn Pn

X Spec(k)

p2

g

p1 f

By [Har77, III.9.3], there is a natural isomorphism

Hi(Pn,G)⊗OX = g∗Rif∗G ' Rip1∗p
∗
2G

since X is flat over k. Now since Rif∗G = Hi(Pn,G), we have

g∗Rif∗G ' Hi(Pn,G)⊗OX .
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3.1.2 The Eagon-Northcott complex

As an illustration of Subsection 3.1.1, we construct the resolution of the ideal of
the twisted cubic of P3. Recall that the twisted cubic C = V

(
I2(M)

)
is the zero

locus of the 2 × 2-minors of the matrix M =

(
x0 x1 x2

x1 x2 x3

)
with entries in the

polynomial ring R = k[x0, . . . , xn].
As we explained in Subsection 2.1.1, we identify C with a complete intersection

scheme D in the product P = P3 × P1, P3 × P1 being the projectivization P
(
O2

P3

)
.

Hence a locally free resolution of OD reads:

0 OP(−3,−3) OP(−2,−2)3 OP(−1,−1)3 OP OD 0. (3.1.2)

The sheaves OP(−i,−j) are the sheaves p∗1OP3(−i)⊗p∗2OP1(−j) of Subsection 3.1.1
where p1 and p2 are the projections:

P3 × P1

P3 P1

p1 p2

Let us now decompose the push forward by p1 of the exact sequence (3.1.2). In
order to do so, we denote as follows the kernel and cokernel in (3.1.2)

0 OP(−3,−3) OP(−2,−2)3 OP(−1,−1)3 OP OD 0

G2 G1

0 0 0

so that G1 and G2 are the kernel of (respectively) the first and second homomor-
phism of (3.1.2).

Now, we apply p1∗ to the exact sequence:

0 G1 OP OD 0

to obtain

0 p1∗G1 p1∗OP p1∗OD R1p1∗G1.

As we explained in Subsection 2.1.1, p1∗OD ' OC and p1∗OP ' OP3 so if R1p1∗G1 =
0, a locally free resolution of OC is given by a locally free resolution of p1∗G1. We
continue this computation by applying p1∗ to the exact sequence:

0 G2 OP(−1,−1)3 G1 0.

We obtain
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0 p1∗G2 p1∗OP(−1,−1)3 p1∗G1 R1p1∗G2

R1p1∗OP(−1,−1)3 R1p1∗G1 R2p1∗G2.

Now we focus on p1∗OP(−1,−1)3 and R1p1∗OP(−1,−1)3. By Proposition 3.1.6,
p1∗OP(−1,−1)3 ' OP3(−1)⊗H0

(
P1,OP1(−1)

)
and H0

(
P1,OP1(−1)

)
= 0 so

p1∗OP(−1,−1)3 = 0.

In the same way,

R1p1∗OP(−1,−1)3 ' OP3(−1)⊗H1
(
P1,OP1(−1)

)
and by Theorem 3.1.5 (c),

H1
(
P1,OP1(−1)

)
= H1

(
P1,OP1(−(1− 2)− 2)

)
' H0

(
P1,OP1(1− 2)

)
= 0.

Hence, we have that p1∗G2 = 0 and p1∗G1 ' R1p1∗G2. Moreover, if R2p1∗G2 = 0,
we have that R1p1∗G1 = 0.

Now we apply p1∗ to the exact sequence

0 OP(−3,−3) OP(−2,−2)3 G2 0

and we obtain

0 p1∗OP(−3,−3) p1∗OP(−2,−2)3 p1∗G2

R1p1∗OP(−3,−3) R1p1∗OP(−2,−2)3 R1p1∗G2

R2p1∗OP(−3,−3) R2p1∗OP(−2,−2)3 R2p1∗G2

R3p1∗OP(−3,−3).

In this sequence, p1∗G2 = 0 as we have already explained. We compute the sheaf
R1p1∗OP(−3,−3) as follows. By Proposition 3.1.6,

R1p1∗OP(−3,−3) ' OP3(−3)⊗H1
(
P1,OP1(−3)

)
and by Theorem 3.1.5 (c), H1

(
P1,OP1(−3)

)
' H0

(
P1,OP1(1)

)
which has dimension

2. So

R1p1∗OP(−3,−3) ' OP3(−3)2

and, in the same way,

R1p1∗OP(−2,−2)3 ' OP3(−2)3.
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Using Theorem 3.1.4, we compute also that the higher direct image sheaves
vanish. Hence, a locally free resolution of R1p1∗G2 reads

0 OP3(−3)2 OP3(−2)3 R1p∗G2 0

so that a locally free resolution of OC is

0 OP3(−3)2 OP3(−2)3 OP3 OC 0.

Actually, this situation consisting of pushing forward a Koszul complex in order
to describe a resolution of the coordinate ring of a determinantal variety is much
more general. The final complex is called the Eagon-Northcott complex. We give
its definition following [Eis05, A2H].

Let R be a ring and let F = Rf and G = Rg be two free R-modules. The
Eagon-Northcott complex of a map α : F → G (or a matrix A representing α) is a
complex

0 Symf−g G
∨ ⊗ ∧fF Symf−g−1G

∨ ⊗ ∧f−1F
df−g+1 df−g

EN(α) :

. . . Sym2G
∨ ⊗ ∧g+2F G∨ ⊗ ∧g+1F ∧gF ∧gG.

d3 d2 ∧gα

Here SymkG is the k-th symmetric power (or divided power in the case that k has
positive characteristic, see[Eis95, A.2.4]) of G.

The homomorphisms dj are defined as follows. First, we define a diagonal map

∆ : SymkG
∨ → G∨ ⊗ Symk−1G

∨

as the dual of the multiplication map G⊗ Symk−1G→ SymkG in the symmetric
algebra of G. Next we define an analogous map

∆ : ∧kF → F ⊗ ∧k−1F

as the dual of the multiplication in the exterior algebra of F∨. On decomposable
elements, this diagonal has the simple form

f1 ∧ . . . ∧ fk 7→
∑
i

(−1)i−1fi ⊗ f1 ∧ . . . ∧ f̂i ∧ . . . ∧ fk.

For u ∈ Symj−1G
∨ we write ∆(u) =

∑
i u
′
i⊗u′′i ∈ G∨⊗Symj−2G

∨ and similarly for

v ∈ ∧g+j−1F we write ∆(v) =
∑
t v
′
t⊗ v′′t ∈ F ⊗∧g+j−2F . Note that α∨(u′j) ∈ F∨

so [α∨(u′i)](v
′
t) ∈ R. We set

Symj−1G
∨ ⊗ ∧g+j−1F Symj−2G

∨ ⊗ ∧g+j−2F

u⊗ v
∑
s,t

[α∨(u′s)](v
′
t) · u′′s ⊗ v′′t

dj :
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We refer to [Eis05, A2H] for the fact that EN(α) is a complex. The following
theorem provides a condition under which EN(α) is resolution of coker(∧gα). Re-
call that the depth of an ideal I over a ring R is the length of a maximal regular
sequence o R in I.

Theorem 3.1.7. [Eis05, A.2.60] Let α : F → G with rank(F ) = f ≥ rank(G) = g
be a map of free R-modules of finite rank. The Eagon-Northcott complex EN(α) is
exact (and thus furnishes a free resolution of R/Ig(α)) if and only if depth

(
Ig(α)

)
is equal to f − g + 1, the greatest possible value.

More details about the construction of the Eagon-Northcott complex as a push-
forward of a Koszul complex can be found in [Eis95, A2] or [Wey03, 6]. The idea is
exactly the one we applied in the case of the twisted cubic of P3 in the beginning
of the subsection. Namely, denoting by C the scheme V

(
Ig(α)

)
, we have that

C is isomorphic to a complete intersection D in P(G). The push forward of the
resolution of OD, that is a Koszul complex, provides a resolution of OC . This is
the Eagon-Northcott complex resolving OC .

3.1.3 Gorenstein rings and linkage

To finish this background section, we introduce the notions of Gorenstein rings
and linkage. To this end, we focus one more time on the twisted curve C in P3.
Recall that the ideal sheaf IC of C is generated by the sections x0x2 − x2

1, x0x3 −

x1x2, x1x3 − x2
2 which are the 2× 2-minors of the matrix M =

(
x0 x1 x2

x1 x2 x3

)
.

Now consider the sub-ideal sheaf IC∪L generated by x0x2−x2
1, x0x3−x1x2. It is

a computation to show that V(IC∪L) is the union of the twisted cubic C and a line
L = V(x0, x1) in P3. Actually, C and L meet in one point p of multiplicity 2 (i.e.
length(OC∪L,p) = 2). In this case, since the union C ∪ L is a complete intersection
curve, we say that C and L are linked. What is remarkable in this example is that
the quotient ideal (IC∪L : IC) is equal to IL and (IC∪L : IL) = IC . This property
of linkage of IC∪L is a property shared by any complete intersection scheme. It is
the property of being Gorenstein.

Let us now give more precise definitions and results concerning this domain
following [Eis95, 21].

Definition 3.1.8. Let A be a local noetherian ring of Krull dimension n, m its
maximal ideal and k its residue field. A is called Gorenstein if

ExtiA(k, A) = 0 for all i 6= n and Extn(k, A) ' k.

A scheme is called Gorenstein if all its local rings are Gorenstein.

Definition 3.1.9. Let A be a local noetherian ring of Krull dimension n, m its
maximal ideal and k its residue field. An A-module M such that the module
ExtnA(A/m,M) vanishes if n 6= height(m) and is 1-dimensional if n = height(m) is
called the canonical module of A. In this case, we denote ωA the canonical module
M .

As a first consequence, we have.
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Proposition 3.1.10. In the situation where A has a canonical module, A is Goren-
stein if and only if ωA = A. Given a Gorenstein scheme X, the invertible sheaf
associated to the local canonical modules is called the dualizing sheaf of X and
denoted by ωX .

Theorem 3.1.11. [Eis95, 21.19] Any complete intersection scheme is Gorenstein.

As we will see, determinantal schemes are also Gorenstein under certain con-
ditions. For us, the result we will use the most concerning Gorenstein schemes is
Theorem 3.1.14 below. Recall that the codimension of an ideal I over a ring A is the
Krull dimension of the localization AI [Eis95, 9]. We define also Cohen-Macaulay
ideal.

Definition 3.1.12. A ring R is Cohen-Macaulay if depth(I) = codim(I) for every
ideal I of R.

Proposition 3.1.13. [BH93] Gorenstein rings are Cohen-Macaulay.

Theorem 3.1.14. [Eis95, 21.23] Let A be a Gorenstein local ring, and let I be an
ideal of codimension 0. Set B = A/I and J = (0 :A I). We have J ' HomA(B,A).

(a) The ideal J has codimension 0 and no embedded components. If I has no
embedded components, then I = (0 :A J) so I and J are linked.

(b) If B = A/I is a Cohen-Macaulay ring, then C = A/J is a Cohen-Macaulay
ring.

(c) If B = A/I is a Cohen-Macaulay ring, then J = (0 :A I) = HomA(B,A) is
a canonical module for B; in particular, B is Gorenstein if and only if J is
a principal ideal of A.

To finish this section about Gorenstein properties, let us explain in more details
some facts we will use in the following.

Proposition 3.1.15. [Eis95, Theorem 21.15] Let P be a smooth variety, ωP be its
dualizing sheaf and let K be a Gorenstein subscheme of P of codimension n. Then
the dualizing sheaf ωK of K verifies ωK ' Extn(OK, ωP).

Remark 3.1.16. In the settings of Proposition 3.1.15, let

0 Qn Qn−1 Qn−2 . . . Q0 OK 0

En−1 En−1 E1

be a locally free resolution of OK, it has length n, since, as a Gorenstein scheme,
K is Cohen-Macaulay. By this, we set that the sheaves Qi are the locally free
sheaves of the resolution and the sheaves Ei are the kernels and cokernels of the
corresponding morphisms. Then, a locally free resolution of ωK reads:

0 Q∨0 Q∨1 Q∨2 . . . Q∨n ωK 0.
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Indeed, applying the functor Hom(·, ωP) successively on each exact sequence

0 Ei Qi−1 Ei−1 0

we can compute by cohomology chasing that Ext1(En−1, ωP) ' Extn(OK, ωP) ' ωK.
This is because the derived sheaves Extj(Qi, ωP) vanishes for all i ∈ {0, . . . , n} and
all j > 0 since the sheaves Qi are locally free.

3.2 Subregularity of the symmetric algebra

3.2.1 Generalities

Assuming that the subscheme Z = V(IZ) of X defined by IZ is zero-dimensional in
a quasi-projective variety X, we provide here a resolution of the ideal of X = P(IZ)
in terms of the pulled-back resolution of the dualizing module of Z, up to some
shift in degree, and of the Eagon-Northcott complex associated with another still
larger algebra, which we call the Koszul hull.

Our precise settings are as follows unless otherwise specified.

Notation 3.2.1. Put n = dim(X) and let IZ be an ideal sheaf generated by
n+ 1 global sections φ0, . . . , φn of a vector bundle L over X. We assume that the
subscheme Z = V(IZ) of X is 0-dimensional. Letting V be the (n+1)-dimensional
subspace generated by φ0, . . . , φn, we consider a surjection

V⊗L∨ → IZ → 0 (3.2.1)

which provides a closed embedding X ↪→ P ' PnX of X = P(IZ).
Here, we denote by P the projective bundle

Proj
(

Sym(OX(−η)n+1)
)

where η stands for c1(L). We also consider its bundle map p : P → X and we let
y0, . . . , yn be its relative homogeneous coordinates.

Depending on the context η can stand also for p∗c1(L) and we let ξ be the first
Chern class of OP(1).

Now, put

Qi,j = (
i+1
∧ V)⊗OP(−(j + 1)ξ − (i− j)η) for 1 ≤ i ≤ n and 0 ≤ j ≤ i− 1

and Qi =
i−1
⊕
j=0

Qi,j . The sheaves Qi are the terms of the Eagon-Northcott complex

associated with the map

ψ : V⊗OP → OP(η)⊕OPnX (ξ).

defined by the matrix (
φ0 . . . φn
y0 . . . yn

)
.

The complex takes the form:
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0 Qn . . . Q1 OPnX . (Q•)

Since dim(Z) = 0, let:

0 Pn . . . P1 P0 OZ 0 (P•)

be a locally free resolution of OZ , so here P0 = OX and P1 = V⊗L∨. We
emphasize that the length of this resolution is n = dim(X) since the scheme Z is
locally Cohen-Macaulay.

Set
P ′i = p∗P∨n+1−i ⊗OP(−nη − ξ) for 1 ≤ i ≤ n+ 1

and let IX be the ideal of X into P. Our result is the following:

Theorem 3.2.2. Under the assumption that dim(Z) = 0, X is Cohen-Macaulay
of dimension n and there is a locally free resolution of IX of the following form:

0 P ′n+1

Qn

⊕
P ′n

. . .
Q1

⊕
P ′1

IX 0. (R1)

Denoting by yi the homogeneous relative coordinates of the projective bundle
P, we make the following definition.

Definition 3.2.3. A complex (R•) over P is subregular if for all i the differential
Ri → Ri−1 is linear or constant in the y variables.

In the proof of Theorem 3.2.2 page 70, we will see that the differentials of R1
are actually linear or constant in the y variables so, anticipating, we can state that:

Corollary 3.2.4. The ideal IX admits a subregular locally free resolution over P.

In the last subsection, we focus on a graded version of this result. The motiva-
tion to study specifically this case is that it is the framework when working with
a rational map from Pn to Pn. It is moreover the case in which we have a more
refined minimal free resolution of the symmetric algebra. For instance

Example 3.2.5. Let IZ = (x2
1 − x1x3, x

2
2 − x2x3, x1x2, x0x3) be the ideal over

R = k[x0, . . . , x3] (remark that that Z = V(IZ) is indeed 0-dimensional in P3).
By a computation via Macaulay2, we have that a minimal free resolution of

IZ reads

0 R(−5)2

R(−3)2

⊕
R(−4)3

R(−2)4 IZ 0.

Now, take the last two modules of this complex and tensor them by S(2,−1)
where S = R[y0, . . . , y3]. They give the beginning of a minimal free resolution of the
ideal IX of the symmetric algebra of IZ over S (also computed with Macaulay2)
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0

S(−4,−2)
⊕

S(−2,−3)

S(−2,−2)4

⊕
S(−3,−1)2

S(−1,−1)2

⊕
S(−2,−1)3

IX 0.

More generally take R = k[x0, . . . , xn] and IZ = (φ0, . . . , φn) an ideal over R
generated by n+ 1 homogeneous polynomials of degree η (this integer η should be
understood as the degree of c1(L) in the sheafified case assuming X = Pn). The
ideal of the symmetric algebra of IZ , denoted by IX, is a bigraded homogeneous
ideal of S = R[y0, . . . , yn]. This time we consider the two complexes (P ′•) and (Q•)
obtained by taking the graded modules of global sections of (P ′•) and (Q•). These
are S-graded subregular complexes. Our result in this setting is the following.

Theorem 3.2.6. Assume IZ is a graded homogeneous Cohen-Macaulay ideal of
dimension 1, then X is Cohen-Macaulay and a minimal bigraded S-free resolution
of IX reads:

0 Q′′n

Q′′n−1

⊕
P ′′n−1

Q′′n−2

⊕
P ′′n−2

. . .
Q′′2
⊕
P ′′2

P ′′1 IX 0 (R2)

where

Q′′i =
n
⊕
j=1

Qi,j , Qi,j = S
(
− (i− j)η,−j − 1)(

n+1
i+1), P ′′i = Pi+1 ⊗ S(η,−1).

Moreover Theorem 3.2.2 and Theorem 3.2.6 are sharp in the following sense.
If dim(Z) > 0, then the resolution of X might not be subregular as shown in the
following example explained to us by Aldo Conca.

Example 3.2.7. In P3, consider the zero locus Z of the ideal IZ = (−x3
2x3 +

x4
3,−x4

2 − x4
3,−x1x

3
3 − x4

3, x
2
2x

2
3 + x4

3). The ideal IZ has Krull dimension 2 over
R = k[x0, . . . , x3], so dim(Z) = 1, and a minimal graded free resolution of IX
reads:

0 S(−5,−3)
S(−5,−2)
⊕

S(−4,−3)3

S(−4,−1)
⊕

S(−3,−2)3

⊕
S(−4,−2)
⊕

S(−3,−3)

S(−1,−1)
⊕

S(−2,−1)2

⊕
S(−3,−1)

IX 0

where we wrote the shift in the y variables in the right position. Hence the resolu-
tion of IX is not subregular.
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3.2.2 Local resolution of the symmetric algebra

Preliminaries

Recall Proposition 2.1.3 that letting a locally free presentation of IZ

P2
M→ P1 → IZ → 0, (3.2.2)

X is the zero scheme of the corresponding section of the composition map s ∈
H0
(
P, p∗P∨2 ⊗ OP(ξ)

)
. In other words, the ideal sheaf IX of X in P is locally

generated by the entries of the row matrix yp∗M where y stands for (y0 . . . yn).
We denote by Mx the matrix obtained from M by specializing at the point x ∈ X.

We emphasize the following remark. Since dim(X) = n and codim(Z,X) = n,
the local ideal sheaf IZ,z of a point z ∈ Z is generated by at least n independent
sections of L lying in V. The crucial point is to take care of the case where z ∈ Z is
a point at which Z is not a complete intersection, i.e all the sections φ0, . . . , φn are
required to generate IZ,z. The following result is restatement of Proposition 2.2.13
but we re-explain its proof in the current settings.

Lemma 3.2.8. Let x ∈ X be a closed point. The scheme-theoretic fibre Xx is:

(i) a point if x /∈ Z,

(ii) isomorphic to Pn−1
x if x ∈ Z and Z is a local complete intersection at x,

(iii) isomorphic to Pnx if x ∈ Z and Z is not a local complete intersection at x.

Proof. Since the formation of the symmetric algebra commutes with base change
(see Proposition 2.1.1), the fibre Xx is obtained by localizing X at x and taking
P(IZ ⊗ kx), where kx is the residue field of OX at x.

(i) If x /∈ Z, locally at x the ideal IZ is just OX , so p is an isomorphism of Xx
to x.

(ii),(iii) If x ∈ Z, since Z has codimension n in X, a subspace of n independent
local sections of L from V is needed at least to generate IZ locally around x.
Actually such subspace exists if and only if Z is a local complete intersection
(LCI) at x. In other words, IZ ⊗ kx is a kx-vector space which can be
generated by an n-dimensional subspace of V if and only if Z is LCI at x, so
that IZ ⊗ kx is isomorphic to knx or to kn+1

x depending on whether Z is LCI
at x or not. Therefore P(IZ ⊗ kx) is isomorphic to Pn−1

x or Pnx depending on
whether Z is LCI at x or not.

Remark 3.2.9. Recall that in our setting of a zero-dimensional scheme Z, the set
of points z ∈ Z such that Xz ' Pnz is equal set theoretically to V

(
Fittn−1(IZ)

)
where Fittn−1(IZ) is the ideal generated by the entries of M (Proposition 2.2.19).
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Now, we take the Koszul complex with respect to the map V⊗OX(−η) = P1
Φ−→

OX and we write ki(Φ) for the i-th differential of the Koszul complex. We have
the following diagram:

∧2P1 P1 IZ 0

F1

0 0

k1(Φ) Φ

(K3)

in which the first row is not exact since Z is not empty and where we put F1 =
Im
(
k1(Φ)

)
. By definition of the presentation and the Koszul complex, we have

F1 ⊂ E and E/F1 = H1(IZ) where E is the kernel of the morphism P1 → IZ
and H1(IZ) stands for the first Koszul homology sheaf of the set (φ0 . . . φn) of
generators of IZ (see Definition 2.2.5 for the definition of the Koszul homology).

The Koszul hull

We introduce now another subscheme of P which we call the Koszul hull of X. This
subscheme contains X and actually differs from X by a copy of PnZ , as we will see.

Definition 3.2.10. Set notation as in (K3) and let IK be the ideal sheaf generated
by the entries in the row matrix yp∗k1(Φ). We call the Koszul hull, denoted by K,
the subscheme in P defined by K = V(IK).

Now, we explain the strategy of the proof of Theorem 3.2.2. Via the inclusion
F1 ⊂ E , we see that IK ⊂ IX, that is X ⊂ K. Hence we have the following short
exact sequence:

0 IK IX IX/IK 0.

So in order to get the subregularity of the resolution of IX, we first show the
subregularity of resolutions of IK and of IX/IK and from there, we show how we
get the resolution of IX by patching together these resolutions.

We start by analysing the Koszul hull more closely.

Proposition 3.2.11. We have the following properties.

(i) The scheme K is determinantal. More precisely, IK is the ideal of the 2× 2
minors of the map V⊗OP → OP(η)⊕OP(ξ) defined by the matrix:

ψ =

(
φ0 . . . φn
y0 . . . yn

)
.

Under the assumption that dimX(Z) = 0:

(ii) codim(K,P) = n.
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(iii) A locally free resolution of IK is the sheafification of the Eagon-Northcott
complex. Namely, there is a long exact sequence:

0 Qn . . . Q2 Q1 IK 0 (Q•)

where Qi =
i−1
⊕
j=0

Qi,j and

Qi,j = (
i+1
∧ V)⊗OP(−(j + 1)ξ − (i− j)η) for 1 ≤ i ≤ n and 0 ≤ j ≤ i− 1.

(iv) The scheme K is Gorenstein and its dualizing sheaf ωK verifies:

ωK ' p∗ωX ⊗OP(nη − nξ).

Proof. (i) The morphism k1(Φ) takes the form,

k1(Φ) =



φ1 φ2 . . .
−φ0 0 . . .

0 −φ0 . . .
... 0 . . .
...

... . . .


and IK is generated by the entries in the row matrix yp∗k1(Φ). Those entries
are the same as the 2× 2 minors of the matrix ψ.

(ii) We argue set-theoretically by looking at the fibres of the map K → X ob-
tained as restriction of p to K. First, note that if z 6∈ Z, then it is clear by
the definition of K that Kz is a single point. On the other hand, if z ∈ Z
then φi(z) = 0 for all i ∈ {0, . . . , n} so by definition of K we have Kz = Pnz .
Therefore the reduced structure of K is the union of X and of ∪z∈ZPnz . This
proves that K has dimension n.

(iii) Since K is determinantal of the expected codimension, it is Cohen-Macau-
lay [BV88, Cor. 2.8]. Hence depth(IK) = codim(K,P) = n. Therefore the
Eagon-Northcott complex provides a global resolution of the ideal IK [BV88,
Th. 2.16]. The first map ∧2 V⊗OP → ∧2OP(η) ⊕ OP(ξ) of the Eagon-
Northcott complex is the matrix ∧2ψ. Hence the complex (Q•) provides a
resolution of IK.

(iv) Refering to Proposition 3.1.15, we know that if K is Gorenstein, then it-
s dualizing sheaf ωK should be isomorphic to Extn(OK, ωP). So set ωK =
Extn(OK, ωP) and let show that this verifies the properties of a dualizing
sheaf of a Gorenstein scheme. By the previous item (iii), a resolution of ωK
is given by:

0 Q∨1 ⊗ ωP . . . Q∨n−1 ⊗ ωP Q∨n ⊗ ωP ωK 0
M1 (3.2.3)

see Remark 3.1.16 for a better explanation of this fact. Hence, the first
condition on the vanishing of the sheaves Exti(OK, ωK) for i < n is verified
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locally by localizing (3.2.3) at any p ∈ K and noting that Exti(OK,p, ωK, p)
vanishes.

We show now that ωK is locally free of rank 1. Locally, we can write explic-
itly the matrix M1 which is the transpose of the last matrix in the Eagon-
Northcott complex. So M1 has size n× (n− 1)(n+ 1) and locally takes the
form:

φ0 φn 0 0

y0 yn φ0 φn 0 0

0 0 y0 yn φ0 φn 0 0

0 0 y0 yn



M1 =

Consider an open cover of X by a family of open subsets {Ut | t ∈ J} such
that Ut ∩Z = {zt}. If z ∈ U ⊂ Ut\{zt} for all t, then the restriction of IZ to
U is equal to OU so that KU = XU = U is obviously Gorenstein, because U
is smooth.

Or else, if z = zt for some t, then φs(z) = 0 for all s ∈ {0, . . . , n}. In this case,
since every point (y0 : . . . : yn) ∈ Pnz has at least one non zero coordinate,
the matrix (M1)z has corank 1. This shows that for any point of X, the stalk
of ωK has rank 1 at that point, so ωK is locally free of rank one. Hence KUj
is Gorenstein. This proves that K is Gorenstein.

Now, we show the isomorphism

ωK ' p∗ωX ⊗OP(nη − nξ).

To do this, we first give an explicit formula for ωK by describing the scheme K
as a complete intersection into a larger projective bundle (see [Ein93] for more
details about this construction). Let B be the projective bundle P

(
OP(η) ⊕

OP(ξ)
)

and put ζ for the relative hyperplane class of the bundle map q :
B → P. A divisor D in |OB(ζ)| corresponds to a morphism ψD : OP →
OP(η)⊕OP(ξ). Since the matrix ψ whose 2× 2 minors define K has constant
rank 1 over K, the map q restricts to an isomorphism from the complete
intersection ∩ni=0Di to K, where Di corresponds to ψDi = (φi, yi).

Therefore, by adjunction we have:

q∗ωK ' ωB
(
(n+ 1)ζ

)
. (3.2.4)

Next, we show that:
OK(ζ) ' OK(η). (3.2.5)

Indeed, given a divisor D ∈ |OB(ζ)|, the intersection D∩K is defined in P by
the vanishing of the 2× 2 minors of the matrix:(

φ0 . . . φn φD
y0 . . . yn yD

)
,
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where ψD = (φD, yD) corresponds to D. Since yD lies in 〈y0, . . . , yn〉, this
matrix is equivalent up to row and column operations to:(

φ0 . . . φn φ′D
y0 . . . yn 0

)
,

for some φ′D ∈ H0(X,L).

This means that the ideal of D ∩ K in K is generated by (y0φ
′
D, . . . , ynφ

′
D).

Since all the yi do not vanish simultaneously, this implies that OK(ξ) is
generated by the restriction to K of φ′D. Hence OK(ζ) ' OK(η) and we
compute:

ωP ' p∗ωX ⊗OP
(
− (n+ 1)ξ

)
and therefore:

ωB ' q∗ωP ⊗OB(−2ζ + η + ξ).

Hence by (3.2.4) and (3.2.5), we get that ωK ' p∗ωX ⊗OP(nη − nξ).

From the description of the morphisms di of the Eagon-Northcott complex given
just before Theorem 3.1.7, we have that these morphisms have constant or linear
entries in the yi variables. Hence

Corollary 3.2.12. The resolution (Q•) is subregular.

Description of the quotient IX/IK

We show now the subregularity of a locally free resolution of the quotient IX/IK.
Let us outline that since Z is a zero dimensional scheme of finite type it is affine
hence projective. As such it has a dualizing sheaf ωZ , see [Har77, Proposition 7.5].

Proposition 3.2.13. We have the following isomorphism:

IX/IK ' p∗(ωZ ⊗ ω∨X)⊗OP(−nη − ξ).

The proof of this proposition is the object of Lemma 3.2.14. Its proof and the
proof of Proposition 3.2.13 rely mostly on Theorem 3.1.14.

Lemma 3.2.14. The quotient ideal sheaf (IK : IX) is isomorphic to p∗IZ .

Proof. As in the proof of Proposition 3.2.11, we denote by k1(y) the first differential
in the Koszul complex associated to the map (y0 . . . yn). We denote also by IX,K
the ideal of X in K and W stands for the scheme p∗Z. Of course we have W ' PnZ .
The inclusion IK ⊂ IW explains the right horizontal exact sequence in the following
commutative diagram:
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0

∧2 V⊗OP(−ξ − η) IK 0

0 p∗E V⊗OP(−η) IW 0

0 C OP(ξ − η) IW/IK 0

0 0 0

k1(y)

y

p∗M

yp∗k1(Φ)

p∗Φ

β

The commutativity in the right above square comes from the following fact. Writing
down the matrix k1(y) as follows:

k1(y) =



y1 y2 . . .
−y0 0 . . .

0 −y0 . . .
... 0 . . .
...

... . . .


and similarly for k1(Φ), it is direct computation to show that yp∗k1(Φ) = p∗Φk1(y).

Hence, the image of the map β = yp∗M is exactly the ideal IX(ξ) and we have
that:

Ann(IW/IK) ' IX.

Now we use the assumption that Z is zero-dimensional. Since the statement is
local and the formation of the symmetric algebra commutes with base change (see
Proposition 2.1.1), we can assume that OP and OK are Gorenstein local rings. We
apply Theorem 3.1.14 to the Gorenstein scheme K and to the ideal sheaf IX,K.

We denote by IW,K the ideal of W in K. Since W has codimension 0 in K
and has no embedded components, the ideals IW,K and IX,K are linked in OK.
This shows that IW,K = Ann(IX,K). Now, since we have already IK ⊂ IW, the
equality occurs as ideal sheaves of OP itself. Moreover we have the isomorphism
Ann(IX,K) ' (IK : IX). Hence:

IW = p∗IZ ' (IK : IX).

Proof of Proposition 3.2.13. As above, we can assume that OP and OK are Goren-
stein local rings and we apply Theorem 3.1.14 to OK. We denote again by IX,K the
ideal of X in K and by IW,K the ideal of W in K (recall that W = p∗Z).

Since IX,K has codimension 0 in OK, we have that (IK : IX) and IX,K are linked.
But following the notation in Lemma 3.2.14, (IK : IX) ' IW,K.
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Moreover, applying Theorem 3.1.14 in a sheafified case, W is Cohen-Macaulay
as a pull back of Z so X is also Cohen-Macaulay and we have:

IW,K ' ωX ⊗ ω∨K

where ωX is the canonical sheaf of X. We also have that:

ωW ⊗ ω∨K ' IX,K ' IX/IK.

Now, since W ' PnZ , we have ωW ' p∗ωZ ⊗ OP(−(n + 1)ξ). Therefore, by
Proposition 3.2.11:

IX/IK ' ωW ⊗ ω∨K ' p∗(ωZ ⊗ ω∨X)⊗OP(−nη − ξ).

Denoting H1(IZ) the first Koszul homology associated to

Φ : V⊗OX(−η)→ OX ,

as in (K3), we emphasize the following point in order to elucidate the nature of
the sheaf IX/IK.

Proposition 3.2.15. The sheaf IX/IK is isomorphic to the pull-back of the first
homology H1(IZ) of Φ up to a shift. More precisely, we have

IX/IK ' p∗H1(IZ)⊗OP(η − ξ).

Proof. To shorten the notation, we set H1 for H1(IZ). We are going to show that

H1 ' ωZ ⊗ ω∨X
(
−(n+ 1)η

)
. (3.2.6)

First, ωZ ' Extn(OZ , ωX). Hence, we will prove (3.2.6) by showing that

OZ ' Extn(H1, ωX)⊗ ω∨X
(
−(n+ 1)η

)
.

To this end, let:

0
n+1
∧ P1 . . .

2
∧P1 P1 IZ 0

F2 F1 ⊂ E

kn(Φ) k1(Φ) Φ
(K4)

be the Koszul complex associated with Φ = (φ0 . . . φn), where
i
∧P1 = (∧i V) ⊗

OX(−iη). Since codim(Z,X) = depth(IZ) = n the Koszul homology is concen-
trated in degree 1 and by definition H1 = E/F1.

Applying the functor Hom(−, ωX) to (K4), we obtain:

0 Hom(F1, ωX) . . . V⊗ωX(nη)

ωX
(
(n+ 1)η

)
Ext1(Fn−1, ωX) 0
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and it is a computation to show that Ext1(Fn−1, ωX) ' Extn−1(F1, ωX).
The last point is that Extn−1(F1, ωX) ' Extn(H1, ωX). Indeed, by the long

exact sequence associated to the short exact sequence:

0 F1 E H1 0

we have the following exact sequence:

Extn−1(E , ωX) Extn−1(F1, ωX) Extn(H1, ωX) Extn(E , ωX)

and Extn−1(E , ωX) = Extn(E , ωX) = 0 since Z is locally Cohen-Macaulay.
Moreover, the last map kn(Φ) of the Koszul complex is the transpose of the

first map Φ up to signs. Thus the maps in the sequence:

V⊗ωX(nη) −→ ωX
(
(n+ 1)η

)
→ Extn(H1, ωX)→ 0

are the same as the maps in the exact sequence:

P1
Φ−→ OX → OZ → 0.

Taking care of the twisting, this means that OZ ⊗ ωX
(
(n+ 1)η

)
' Extn(H1, ωX).

This implies H1 ' ωZ ⊗ ω∨X
(
−(n+ 1)η

)
.

Remark 3.2.16. To enlighten the construction of the sheaves P ′i for i ∈ {1, . . . , n+
1} in the following proof of Theorem 3.2.2, recall that the complex:

0 Pn . . . P1 P0 OZ 0 (P•)

is a locally free resolution of OZ . Hence, applying the functor Hom(−, ωX) to
Equation (P•), a locally free resolution of ωZ reads:

0 P∨0 ⊗ ωX . . . P∨n ⊗ ωX ωZ 0

(see Remark 3.1.16 for a better explanation of this fact) from which we can read a
locally free resolution of ωZ ⊗ ω∨X .

Proof of Theorem 3.2.2. As we saw in Lemma 3.2.8 and in the proof of Proposi-
tion 3.2.13, X is Cohen-Macaulay of dimension n.

Moreover, by Proposition 3.2.11 and Proposition 3.2.13, we have the following
commutative diagram:

0

0 Qn
. . . Q2 Q1 IK 0

IX

0 P ′n+1 P ′n . . . P ′2 P ′1 IX/IK 0.

0
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where

Qi =
i−1
⊕
j=0

(
(
i+1
∧ V)⊗OP(−(j + 1)ξ − (i− j)η)

)
and

P ′i = p∗P∨n+1−i ⊗OP(−nη − ξ) for 1 ≤ i ≤ n+ 1.

Let us explain now how these resolutions patch together to give the desired
resolution of IX. So denote Ki the kernels (and cokernels) of the complex (Q•) and
Ti as in the following diagram :

K2 K1 0

0 Qn
. . . Q2 Q1 IK 0

IX

0 P ′n+1 P ′n . . . P ′2 P ′1 IX/IK 0

0Tn T2 T1

δn+1

dn d2 d1

δn δ2 δ1

where δi and di stands for the morphisms of the associated resolutions. In order to
construct the desired resolution, we first prove that δ1 lifts to a map δ̃1 : P ′1 → IX .
To do this, it suffices to prove that Ext1

(
P ′1, IK

)
= 0, that is H1

(
P, IK⊗P ′∨1

)
= 0.

Observe that, once we show that δ̃1 exists, then the map (d1, δ̃1) : Q1 ⊕ P1 → IX
is surjective. Let us now check the required vanishing. In view of (Q•), it suffices
to show that Hi (P,Qi ⊗ P ′∨1 ) = 0 for all i ∈ {1, . . . , n}. Proposition 3.1.6 implies
these vanishings since Hi

(
Pn,OPn(−j)

)
= 0 for all j = 0, . . . , i − 1. In the case

i = n, we use that

Hn
(
Pn,OPn(−j)

)
' H0

(
Pn,OPn(j − n− 1)

)
and the fact that j − n− 1 ≤ −2.

Now consider the kernel S1 of the constructed morphism Q1 ⊕ P ′1 → IX. We
have an exact sequence

0 K1 S1 T1 0.

Next, we construct a surjection Q2⊕P ′2 → S1 again by lifting the map δ2 : P ′2 → T1

to δ̃2 : P ′2 → S1. This is achieved if we show that Ext1(P ′2,K1) = 0. Again, we use
a piece of (Q•) to show this vanishing. Indeed, we write the resolution

0 Qn . . . Q2 K1 0.

Applying Proposition 3.1.6 to this complex yields again the required vanishing.
Therefore, we have now a surjection (d2, δ̃2) : Q2 ⊕P ′2 → S1. Composing with the
injection of S1 into Q1 ⊕ P ′1, by construction we get

Q2

⊕
P ′2

d1 a1

0 δ1


−→

Q1

⊕
P ′1
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where a1 is the composition of δ̃2 with the natural map S1 → Q1. Note that the
map a1 can have only constant or linear entries with respect to the yi variables
because of degree reasons. Continuing this way we construct a resolution

0 P ′n+1

Qn

⊕
P ′n

. . .
Q1

⊕
P ′1

IX 0. (3.2.7)

of IX. The morphisms in the above resolution take the form

Qi+1

⊕
P ′i+1

di ai
0 δi


−→

Qi

⊕
P ′i

where i ∈ {1, . . . , n}. These morphisms have linear or constant entries as this holds
for δi (as di of course does not depend on the yj), for ai (by degree reasons just as
for a1) and for the di (by Corollary 3.2.12).

This shows Theorem 3.2.2 and Corollary 3.2.4.

A direct application of Theorem 3.2.2 is as follows.

Corollary 3.2.17. Under the assumption that dim(Z) = 0, the ideal IX has a
resolution of the following form:

0 Gn+1 Gn . . . G2 G1 IX 0

where Gi =
i
⊕
j=1

p∗Tij ⊗ OP(−jξ) when i ∈ {1, . . . , n} and Gn+1 = p∗Tn ⊗ OP(−ξ)

for some locally free sheaves Tij and Tn over X.

3.2.3 Graded free resolution of the symmetric algebra

Now, we turn to the analysis of a resolution of the symmetric algebra of a homoge-
neous ideal of the polynomial ring R = k[x0, . . . , xn]. So let IZ = (φ0, . . . , φn) ⊂ R
be an ideal generated by n+1 linearly independent homogeneous polynomials each
one of the same degree η ≥ 2. We will denote by RZ the quotient R/IZ and by Z
the subscheme V(IZ) of Pn = Proj(R).

We will assume that dim(Z) = 0 and that RZ is a graded Cohen-Macaulay
ring.

As above let:

0 Pn . . . P2 P1 IZ 0M (P•)

be a minimal graded free resolution of IZ , M being the presentation matrix of IZ
and P1 = R(−η)n+1. The length of the resolution is equal to n = dim(Pn) since Z
is Cohen-Macaulay.

As in the previous section, let k1(Φ) : ∧2P1 → P1 be the second differential

of the Koszul complex associated with the map Φ : P1
(φ0 ... φn)−−−−−−→ R. Put F =

Im
(
k1(Φ)

)
in order to have the following diagram:
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R(−2η)(
n+1
2 ) R(−η)n+1 IZ 0.

F

0 0

k1(Φ) Φ

Definition 3.2.18. Set S = R[y0, . . . , yn] and y = (y0 . . . yn). We let IX be the
ideal of S generated by the entries in the row matrix yM and IK be the ideal of S
generated by the entries in the row matrix yk1(Φ).

Here, as above, F ⊂ E = Image(M) so IK ⊂ IX.

Notation 3.2.19. Since S is bigraded by the variables x and y, S(−a,−b) stands
for a shift in x for the left part and y for the right part.

As above, we denote by P the product Pn × Pn and by p : Pn × Pn → Pn the
first projection.

To show Theorem 3.2.6, the strategy is initially the same as in the previous
section, but since we are dealing with free resolutions, the resolutions of IK and
IX/IK will patch together providing a resolution of IX without further checking.
We will explain afterwards how we deduce from this resolution a minimal bigraded
free resolution of IX.

The Koszul hull

All the arguments of the proof of Proposition 3.2.11 remain valid in the graded
homogeneous setting. So the ideal IK has the following properties:

(i) IK is a determinantal ideal.

Under the assumption that codim(Z,Pn) = n:

(ii) codim(K,P) = n.

(iii) a graded free resolution of IK is the Eagon-Northcott complex associated to
the matrix:

ψ =

(
φ0 . . . φn
y0 . . . yn

)
.

Hence, the following complex is a bigraded free resolution of IK:

0 Qn . . . Q2 Q1 IK 0 (Q•)

where Qi =
i−1
⊕
j=0

Qi,j and

Qi,j = S
(
− (i− j)η,−j − 1)(

n+1
i+1) for 1 ≤ i ≤ n and 0 ≤ j ≤ i− 1.

(iv) The scheme K is Gorenstein and the canonical module ωSK of K verifies:

ωSK ' S
(
n(η − 1)− 1,−n

)
.
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Identification of the quotient IX/IK

We denote by ωRZ the canonical module of Z. All the arguments of Proposi-
tion 3.2.11 and Theorem 3.1.14 apply in the graded case since RZ is a graded
Cohen-Macaulay ring of depth n. Hence we have that:

IX/IK ' ωRZ ⊗ S(n(1− η) + 1,−1) as S-modules.

Recall that (P•) is a minimal graded free resolution of IZ . Put

P ′i = P∨n+1−i ⊗ S
(
− nη,−1) for i ∈ {1, . . . , n+ 1}.

Then the complex:

0 P ′n+1

Qn
⊕
P ′n

. . .
Q2

⊕
P ′2

Q1

⊕
P ′1

IX 0 (R2’)

is a bigraded free resolution of IX.

Homotopy of complexes

We turn now to the problem of extracting a minimal bigraded free resolution of IX
from (R2’). In order to do so, we show first the following result.

Proposition 3.2.20. There is a canonical isomorphism

p∗OX(ξ) ' IZ

where OX(ξ) and IZ are the sheafification of respectively S(0, 1) and IZ .

We emphasize that this is not completely straight forward since X is the Proj of
IZ which is not locally free (see Stack project, 26.21. Projective bundles, example
26.21.2).

Proof. Since OP(ξ) is the relative ample line bundle of the projective bundle P =
P
(
OX(−η)n+1

)
, we have:

Rkp∗OP(lη − jξ) =


0 for l > 0 and j ≤ 0,

0 for j ∈ {1, . . . , k − 1} and any l,

OX(lη) for k = 0 and j = 0,

On+1
X

(
(l − 1)η

)
for k = 0 and j = −1.

Therefore, applying p∗ to the resolution (R1) and chasing cohomology we get
R1p∗IX(ξ) = 0.

Recall that we denote by E the kernel of Φ : OX(−η)n+1 → IZ and that IX(ξ)
is the image of the map p∗E → OP(ξ). Let H be the kernel of this surjection and
write the exact sequence:

0 H p∗E IX(ξ) 0.

https://stacks.math.columbia.edu/tag/01OA
https://stacks.math.columbia.edu/tag/01OA
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Since p∗p
∗E ' E and R1p∗p

∗E = 0, applying p∗ to this exact sequence, we get:

0 p∗H E p∗IX(ξ) R1p∗H 0. (a)

Also, since we proved that R1p∗IX(ξ) = 0, applying p∗ to the canonical exact
sequence

0 IX(ξ) OP(ξ) OX(ξ) 0

we get

0 p∗IX(ξ) OX(−η)n+1 p∗OX(ξ) 0. (b)

The exact sequences (a) and (b) fit into the following commutative diagram:

0

p∗H 0

E E

0 p∗IX(ξ) OX(−η)n+1 p∗OX(ξ) 0

0 R1p∗H IZ p∗OX(ξ) 0

0 0

'

=

where (a) is the left column, (b) is the central row and the map IZ → p∗OX(ξ)
in the bottom row is the canonical morphism associated to the projectivization of
IZ . This morphism is an isomorphism over X\Z and therefore IZ → p∗OX(ξ) is
injective because IZ is torsion free. Hence p∗H ' 0 ' R1p∗H and p∗OX(ξ) ' IZ .

Proof of Theorem 3.2.6. We work as in the previous proposition. Applying p∗ to
the resolution of OX(ξ) given by (R1) and considering the associated R-modules of
global sections, we obtain the following graded free resolution of IZ :

0 P∨0
(
− (n+ 1)η

) R
(
− (n+ 1)η

)
⊕

P∨0
(
− (n+ 1)η

) . . .

R(−2η)(
n+1
2 )

⊕
P∨n (−(n+ 1)η)

R(−η)n+1 IZ 0.



76 CHAPTER 3. RESOLUTION OF THE SYMMETRIC ALGEBRA

This resolution is homotopic to the minimal free resolution (P•) of IZ . There-
fore, the truncated complex (P≥1) of (P•) is homotopic as a S-complex to:

0 P ′n−1

Qn,0
⊕
P ′n

. . .
Q1,0

⊕
P ′1

.

Hence, (R2’) is homotopic to:

0 Q′′n

Q′′n−1

⊕
P ′′n−1

Q′′n−2

⊕
P ′′n−2

. . .
Q′′2
⊕
P ′′2

P ′′1 IX 0 (R2)

where

Q′′i =
n
⊕
j=1

Qi,j , Qi,j = S
(
− (i− j)η,−j − 1)(

n+1
i+1), P ′′i = Pi+1 ⊗ S(η,−1).

The complex (R2) is thus a bigraded free resolution of IX.
To finish the proof of Theorem 3.2.6, it remains to show that (R2) is minimal.

This follows from the minimality of (P•) and the fact that, if i 6= i′, there is no
bigraded homogeneous piece of the same degree among Q′′i and Q′′i′ or P ′′j for any
j ∈ {1, . . . , n− 1}.



Part II

Application to the study of
rational maps
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Chapter 4

n-to-n-tic maps

As we saw in Chapter 2, given a rational map Φ : Pn 99K Pn defined by n + 1
homogeneous polynomials φ0, . . . , φn ∈ R = k[x0, · · · , xn] and denoting IZ =
(φ0, . . . , φn) for the ideal sheaf of the base locus Z of Φ, we can study two schemes
related to IZ . First, there is the graph Γ of Φ which is the Proj of the Rees algebra
of IZ . By definition, the projective degrees of Φ are defined as the coefficients of
the decomposition of Γ in cycle classes in Pn × Pn. Hence, we can read from Γ
whether Φ is birational. Second, there is the projectivization X of the ideal of IZ
which is the Proj of Sym(IZ). Actually X contains Γ as an irreducible component
and we have moreover the following commutative diagram:

Pn × Pn

X

Γ

Pn Pn

p1 p2

π1 π2

σ1 σ2

Φ

where p1 (resp. p2) is the projection over the first factor Pn (resp. second factor
Pn).

Notation. In the following, and with the notation in the previous diagram, we
denote by h1 (resp. h2) the class of a pull back of a hyperplane of Pn by p1 (resp.
p2).

Given a vector bundle G over Pn × Pn and two integers i and j, we denote also
by G(i, j) the twisted vector bundle G(ih1 + jh2).

The equations of X and Γ in Pn × Pn are closely related to a free presentation
of IZ . Namely, let
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⊕
i≥1
OPn(−i)bi On+1

Pn IZ(δ) 0

E

0 0

M
(
φ0 . . . φn

)

be a locally free presentation of IZ and where E is the image of M in On+1
Pn . Writing

y0, . . . , yn for the variables of Pn, the equations of X in Pn × Pn are the entries
of the row matrix

(
y0 . . . yn

)
M and we can compute the equations of Γ from

these equations.

Definition 4.0.1. We call the sheaf E , the sheaf of relations of IZ .

Hence, if E is locally free, X is the zero locus of a global section of the vector
bundle p∗1E∨(h2) over Pn × Pn. Moreover, if E is split as a sum of n line bundles

OPn(−ai), p∗1E∨(h2) is equal to the sum
n
⊕
i=1
OPn×Pn(aih1 + h2) and X is thus the

intersection of n divisors in Pn × Pn. Hence, when X has pure dimension n, it is
a complete intersection in Pn × Pn and this last case makes particularly easy to
compute the naive multidegree of Φ. As we will see in Definition 4.1.1 the naive
multidegree of Φ is defined in the same way as the multidegree of Φ is defined, that
is the multidegree (d0, . . . , dn) of Φ is the decomposition of Γ in cycle classes in
CH(Pn × Pn) and the naive multidegree (d0, . . . , dn) of Φ is the decomposition of
X in cycle classes in CH(Pn × Pn).

In the present chapter and Chapter 5, we focus on two situations for which E
is locally free. The first one is to assume that E is split. The second one will be to
work on the base variety X = P2. Let focus on the first case.

By the Hilbert-Burch theorem [Eis95, 20.15], in the case that Z has the expected
codimension 2, the fact that E is split is equivalent to the fact that IZ is the ideal of
maximal minors of M . Let us illustrate this with the following situation extracted
from [DH17, Example 4.17].

Example 4.0.2. Let Φ be the rational map defined by the 3 × 3-minors of the

matrix M =


−x1 x0 −x2

1 + x0x3

x0 x1 x2
0 − x1x2

0 x2 x0x1 − x1x3

0 x3 −x0x1 + x0x2

. Hence the base ideal sheaf IZ has the

following locally free presentation:

0 OP3
1
(−1)2 ⊕OP3

1
(−2) O4

P3
1

IZ(4) 0
M

(
φ0 . . . φ3

)

where OP3
1

is the structure sheaf of P3
1.

Hence, the ideal IX of X in P3
1×P3

2 is generated by the entries of the row matrix(
y0 . . . y3

)
M , and since via a Macaulay2 computation we know that X has

dimension n, we have that X is the complete intersection of two hypersurfaces of
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bidegree (1, 1) and one hypersurface of bidedegree (2, 1). Hence the decomposition
of X in cycle classes is

(h1 + h2)2(2h1 + h2) = 2h3
1 + 5h2

1h2 + 4h1h
2
2 + h3

2

where h1 = c1
(
p∗1
(
OPn(1)

))
and h2 = c1

(
p∗2
(
OPn2 (1)

))
. Thus (d0, d1, d2, d3) =

(2, 5, 4, 1).

Now, we focus on the decomposition of X into its irreducible components. As
we explained in Proposition 2.2.13, the possible torsion components are fibres over
components of V

(
Fitti(IZ)

)
for i ∈ {1, 2}. Here V

(
Fitt2(IZ)

)
is empty but

Fitt1(IZ) is supported over V(x0, x1) in P3
1. Actually, it is a computation, for

example by computing the primary decomposition of X with Macaulay2, to show
that the ideal of the torsion component T in P3 × P3 is IT = (x0, x1, y2x2 + y3x3).

To sum up X decomposes as the union of two components Γ and T each one of
dimension 3. These two components have to be taken in account for the computa-
tion of the naive projective degrees of X. In this case, T is a complete intersection
so its multidegree (1, 1, 0, 0) is easy to determine. Hence, the multidegree of Γ is
(2−1, 5−1, 4, 1) = (1, 4, 4, 1). To explain this subtraction, we refer to the geometric
interpretation of the naive multidegree or multidegree. For example, the nth naive
projective degree, is the coefficient of h3

2 in the decomposition of X. But since T
intersect h3

2 once, Γ must intersect h3
2 once too.

By the previous analysis, we want to emphasize that the data of determinantal
maps with given multidegree is equivalent to the data of the ideal of minors of the
presentation matrix M .

There are two main motivations for this chapter. First, as we mentioned in
Theorem 4, the multidegree of a Cremona map verifies the Cremona inequalities
but it is not known if given a sequence (d0, . . . , dn) verifying Cremona inequalities,
there exists a Cremona map Pn 99K Pn. Hence, the construction we propose is
already a way to partially answer, even with n big, Problem A concerning the
Cremona inequalities.

The second motivation concerns more precisely particular birational maps Φ :
P3

1 99K P3
2 whose inverses Φ−1 have the same algebraic degree than Φ. For simplicity

we call these maps n-to-n-tics by analogy with the more common denomination
cubo-cubic and quarto-quartic in degree 3 and 4. Recall from Subsection 1.3.3 that
the second multidegree d2 of Φ is the algebraic degree of Φ−1. Hence n-to-n-tic
maps are the maps with multidegree (1, n, n, 1). Since quadro-quadrics (1, 2, 2, 1)
rational maps of P3 cannot be defined by the maximal minors of a (4× 3)-matrix
of non constant entries, we did not focus on this case. Let us emphasize however
that these quadro-quadric maps have been studied and classified via the XJC-
correspondance (see [PR16]) in [PR13] and [PR14].

4.1 Expected degrees and naive projective degrees

With the previous notation, we let Pn 99K Pn be rational map.
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Definition 4.1.1. We define the naive multidegree (d0, . . . , dn) of Φ as the multi-
degree of X of the base ideal sheaf I of Φ in Pn × Pn, i.e.

[X] =

n∑
i=0

dih
i
1h
n−i
2

For i ∈ {0, . . . , n}, we call di the ith naive projective degree.

Let us illustrate this definition with the nth projective degree.

Example 4.1.2. Let Φ : P2 99K P2 be a rational map. In this case the base locus
Z of Φ has codimension 2 so, by 2.2.19, the possible torsion components of X have
dimension 2 in P2 × P2 and X has pure dimension 2.

Since the graph Γ of Φ (resp. X) is defined with two morphisms σ1 : Γ → P2

and σ2 : Γ→ P2 (resp. π1 : X→ P2 and π2 : X→ P2) which are the restriction to
Γ (resp. to X) of the two projections p1 : P2 × P2 → P2 and p2 : P2 × P2 → P2, we
summarize the situation with the following commutative diagram:

P2 × P2

X

Γ

P2 P2.

p1 p2

π1 π2

σ1 σ2

Φ

In this case, c2
(
(OP2×P2(0, 1)2) X

)
and c2

(
(OP2×P2(0, 1)2) Γ

)
are both 0-cycles of

P2 × P2 and the nth projective degree of Φ is the topological degree:

dt(Φ) = deg(c2
(
(OP2×P2(0, 1)2)

)
Γ
)

and the 2nd naive projective degree of Φ is:

d2 = deg(c2
(
(OP2×P2(0, 1)2) X

)
).

Let n ≥ 1 and let I be an ideal sheaf generated by n + 1 global sections of
OPn(δ), identified with homogeneous polynomials in n + 1 variables of degree δ.
Assume that the sheaf of relations E of I is locally free, i.e. a locally free resolution
of I reads

0 E On+1
Pn I(δ) 0.

Concerning this naive multidegree we have the following result.

Proposition 4.1.3. The kth naive projective degree of Φ is equal to the degree of
the n+ 1− kth Chern class cn+1−k(E∨) of E∨ (since CHn+1−k(Pn) ' Z).

Proof. The kth projective degree of Φ is the degree of the support of the coker-
nel Wn+1−k of a general morphism OkPn → I(δ). So we consider the following
commutative diagram:
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OkPn = OkPn

0 E On+1
Pn I(δ) 0

On+1−k
Pn OWn+1−k 0

(φ0 . . . φn)

and we focus on the sequence E → On+1−k
Pn → OWn+1−k → 0. If Wn+1−k has the

expected codimension n+ 1− k, then, by Proposition 1.2.6, the class [Wn+1−k] is
equal to the n+ 1− kth Chern class cn+1−k(E∨) of E∨.

Proposition 4.1.4. Now suppose that the sheaf of relations E of I is split and

equal to
n
⊕
i=1
OPn(−ai) for some integers ai ≥ 1.

Then the naive multidegree of the rational map Φ associated to I is

(dn, . . . , d0) = (sn(a1, . . . , an), . . . , s0(a1, . . . , an))

where si(a1, . . . , an) is the ith elementary function in a1, . . . , an.

Proof. This follows from applying Proposition 4.1.3 and computing the Chern class-
es of E .

Now, with the notation of the introduction to Chapter 4, recall that the base
ideal of a rational map Φ is of linear type if X = Γ. This implies that

(dn, . . . , d0) = (dn, . . . , d0).

Proposition 4.1.5. [DHS12, Corollary 2.6] Let Φ : Pn 99K Pn be a rational
map whose base ideal IZ has a split sheaf of relation and that Z = V(IZ) has
codimension 2.

Assume that I is of linear type, then Φ is birational if and only if the generators
φ0, . . . , φn of I are the maximal minors of a n×n matrix M with only linear entries.

Proof. Since E is split, put E =
n
⊕
i=1
OPn(−ai) and write

n
⊕
i=1
OPn(−ai) On+1

Pn I(δ) 0
M

(
φ0 . . . φn

)

a locally free presentation of I (where δ =
∑
i

aii). As we explained in the intro-

duction, by the Hilbert-Burch theorem [Eis95, 20.15], this is equivalent to the fact
that the φ0, . . . , φn are the n× n-minors of M (because Z has codimension 2).

Now assuming that IZ is of linear type, of course if M has only linear entries
i.e. ai = 1 for all i, dn = dn = sn(1, . . . , 1) = 1 so Φ is birational.

Conversely, if Φ is birational, dn = dn = sn(a1, . . . , an) = 1 which implies that
ai = 1 for all i since the ai are integers. So M has only linear entries.

We use the following notion of generality:
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Definition 4.1.6. We say that a statement holds for a general matrix M if there
exists a Zariski dense subset U of H0(p∗1

(
E∨)(h2)

)
such that the statement holds

for all p∗1M in U . If p∗1M lies in the complement of countably many Zariski closed
subsets of H0(p∗1

(
E∨)(h2)

)
, we say that M is very general.

4.2 Quarto-quartics

A determinantal rational map Φ : P3 99K P3 of algebraic degree 4 is the data of its
presentation (4 × 3)-matrix M necessarily with two columns of linear entries and
one column with quadratic entries, i.e. a locally free resolution of the base ideal
sheaf of IZ reads:

0 E = OP3
1
(−1)2 ⊕OP3

1
(−2) O4

P3
1

IZ(4) 0.
M

(
φ0 . . . φ3

)

Proposition 4.2.1. If p∗1M is general in H0
(
p∗1(E∨)(h2)

)
, then the multidegree

and naive multidegree of Φ are the same and are equal to (2, 5, 4, 1).

Proof. First, this is a theorem of Bertini [Har77, 7.9.1] (p∗1(E∨)(h2) being very
ample since all the ai are strictly positive) that a section of H0(p∗1(E∨)(h2)) is
smooth and irreducible so the projectivization X of IZ is equal to the blow-up
of IZ . In other words, IZ is of linear type so the multidegree and the naive
multidegree of Φ coincide.

Now the symmetric functions in 1, 1, 2 give the multidegree (2, 5, 4, 1).

As we saw, in order to create a torsion component which decreases the 3rd and
2nd projective degree by one, we can make the matrix M have rank 1 over a curve
in P3

1. Since some of the entries of M are linear this curve is necessarily a line, for
instance the line V(x0, x1). We construct a quarto-quartic map as follows. Let

M1 =


a10x0 + a11x1 + a12x2 + a13x3
a20x0 + a21x1 + a22x2 + a23x3
a30x0 + a31x1 + a32x2 + a33x3
a40x0 + a41x1 + a42x2 + a43x3



M2 =


b10x0 + b11x1
b20x0 + b21x1
b30x0 + b31x1
b40x0 + b41x1



M3 =


c12000x

2
0 + c11100x0x1 + c11010x0x2 + c11001x0x3 + c10200x

2
1 + c10110x1x2 + c10101x1x3

c22000x
2
0 + c21100x0x1 + c21010x0x2 + c21001x0x3 + c20200x

2
1 + c20110x1x2 + c20101x1x3

c32000x
2
0 + c31100x0x1 + c31010x0x2 + c31001x0x3 + c30200x

2
1 + c30110x1x2 + c30101x1x3

c42000x
2
0 + c41100x0x1 + c41010x0x2 + c41001x0x3 + c40200x

2
1 + c40110x1x2 + c40101x1x3



be the respective first, second and third columns of M where the coefficients aij , b
i
j

and ciklmn are in k, and assume that the collection of those polynomials is general.

Proposition 4.2.2. Given that M is general among the conditions we imposed,
i.e. p∗1M is general in

H0
(
p∗1
(
OP3(1)⊕ IV(x0,x1)(1)⊕ IV(x0,x1)(2)

)
(h2)

)
,
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the determinantal map of the 3× 3 minors of M has multidegree (1, 4, 4, 1).

Proof. To defineM , put L = V(x0, x1) and let L1 = p∗1(L) in P3×P3. Our definition
of the generality of M is the same as considering s1 general in H0

(
OP3×P3(1, 1)

)
,

s2 general in H0
(
IL1

(1, 1)
)
, s3 general in H0

(
IL1

(2, 1)
)

and considering that X is
the intersection V(s1) ∩ V(s2) ∩ V(s3). But this subvariety is smooth outside L1

by a theorem of Bertini [Har77, 7.9.1] so, by analysing the Fitting ideals of M ,
for instance Fitt1(M) is supported over V(x0, x1) and the other Fitting ideals are
zero, it has two components. One is necessarily the blow-up Γ of I. We denote by
T the other one supported over L1. This latter component T is reduced. Indeed,
by Bertini’s theorem, we can show this property of being reduced by studying
the intersection V(s2) ∩ V(s3) for s2 general in H0

(
IL1(1, 1)

)
and s3 general in

H0
(
IL1

(2, 1)
)

and showing that it is reduced. Since being reduced is an open
property, it suffices to show the reduction for a specific choice of s2 and s3. So let

V(s2) = (H1 × P3) ∪ (P3 ×H2)

where H1 is a hyperplane of the first factor P3 containing L and

V(s3) = (C1 × P3) ∪ (P3 ×H ′2)

where C1 is a quadric surface in the first factor P3 containing L. Then, in particular
since the intersection of H1 and C1 in P3 is equal to the (reduced) union of L with
another line L′, we have

V(s2) ∩V(s3) = (L× P3) ∪ (L′ × P3) ∪ (H1 ×H ′2) ∪ (C1 ×H2) ∪
(
P3 × (H2 ∩H ′2)

)
which is reduced. Hence T is reduced. So, since T coincides set-theoretically with
P(I(4) L), we have T = P(I(4) L).

Actually I(4) L ' O2
L ⊕OL(1) by restriction of the presentation matrix M of

I over L where the columns of M vanish. Hence P
(
I(4) L

)
is a P2-fibration over

L so that the coefficients of h1h
2
2 and h3

2 are respectively 1 and 1. To check the
second coefficient, note that P(I(4) L) = P

(
O2
L ⊕ OL(1)

)
and that the map given

by the relatively ample line bundle is the blow-up of a line in P3. So the cycle h3
1T

is given by the inverse image of a general point of P3 under this blow up, and is
thus a single point.

For the first coefficient, restricting I(4) L to a general plane P we get O3
x where

x = L∩P . So the cycle P(I(4) L)h1 is the plane P(O3
x), which maps to a plane in

P3 and hence cuts a general line along a single point.
To sum up, T is the intersection of L1 with a general divisor of class (1, 1) in

P3×P3, so L1 = h2
1 and T = h2

1(h1 +h2). So the multidegree of T is (1, 1, 0, 0) and
the multidegree of Γ is necessarily (1, 4, 4, 1).

In the article [DH17], J.Déserti and F.Han provide a description of the base
locus of such a general quarto-quartic map.

Proposition 4.2.3. Let Φ : P3
1 99K P3

2 be a quarto-quartic map whose presentation
matrix M verifies that p∗1M is general in

H0
(
p∗1
(
OP3(1)⊕ IV(x0,x1)(1)⊕ IV(x0,x1)(2)

)
(h2)

)
.
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Then the base locus Z of Φ is the union of the line L = V(x0, x1) of multiplicity 3
and a smooth irreducible curve C of genus 5 and degree 8. Moreover L is 5-secant
to C.

Let us emphasize that the total degree 11 of the union of the line L and C is
coherent with the fact that the curve defined by the ideal I3(M) of 3×3-minors of
a matrix M such that p∗1M is general in H0(p∗1(OP3(1)2⊕OP3(2))(h2)) is a smooth
curve of degree 11. Indeed, consider M as a matrix with entry in the polynomial
ring R = k[x0, x1, x2, x3] and consider the ideal I3(M) of 3 × 3-minors of M . By
the genericity of M , the Eagon-Northcott complex associated to M provided a
minimal free resolution of R/I3(M). Namely,

0 OP3
1
(−5)2 ⊕OP3

1
(−6) R(−4)4 R R/I3(M) 0M (4.2.1)

is a minimal free resolution of R/I3(M). Now, as it is explained in [Sch03, 3.2
Free resolutions, page 46], we can compute the Hilbert polynomial of I3(M) via
this resolution, it is equal to HP (I3(M), T ) = 11T − 13 so the degree of the curve
defined by I3(M) in P3 is equal to 11.

Proposition 4.2.4. [DH17, Remark 4.6] The inverse of a determinantal quarto-
quartic map as in Proposition 4.2.3 is a determinantal quarto-quartic map.

Remark 4.2.5. Let us explain how computationally (empirically) we recover this
fact. Let Φ : P3

1 99K P3
2 be a determinantal quarto-quartic general map for which

we denote by

0 OP3
1
(−1)2 ⊕OP3

1
(−2) O4

P3
1

IZ(4) 0.
M

(
φ0 . . . φ3

)

a presentation of IZ . We can assume without lost of generality that the line
supporting the ideal sheaf Fitt0(IZ) is the line V(x0, x1) and that M is given as in
the proof of Proposition 4.2.3. The ideal IX of the projectivization of X in P3

1×P3
2

is generated by two sections of bidegree (1, 1) and one section of bidegree (2, 1)
(the entries of the row matrix

(
y0 y1 y2 y3

)
M).

Then it is a computation to show that the ideal IΓ of the graph Γ of Φ, that is
the saturation [IX : (x0, x1)∞] of IX by (x0, x1) (where we consider (x0, x1) as an
ideal sheaf over P3

1×P3
2) is generated by two sections of bi-degree (1, 1), one section

of bi-degree (2, 1) and one section of bi-degree (1, 2). Now the projectivization IX′
of the projectivization X′ of the base ideal IZ′ of Φ−1 should be generated by
the two sections of bidegree (1, 1) and the section of bidegree (1, 2) generating IΓ.
Indeed, X′ contains the graph Γ of Φ (because it is also the graph of Φ−1) as an
irreducible component and is generated by at least three sections of bi-degree (1, ∗)
because Γ has codimension 3. In this case, these three sections of bi-degree (1, ∗)
are indeed the two sections of bidegree (1, 1) and the section of bidegree (1, 2)
generating IΓ. Since the ideal of the projectivization IX′ of the projectivization
X′ of the base ideal IZ′ of Φ−1 is generated by two sections of bidegree (1, 1) and
one section of bidegree (1, 2), the presentation matrix of IZ′ has two columns with
linear entries and one column of quadratic entries and Φ−1 is thus a determinantal
(quarto-quartic) map. See Chapter 7 for the details of the last argument.
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One way to complete our proof that X′ is indeed generated by the two sections
of bidegree (1, 1) and the section of bidegree (1, 2) generating IΓ would be to show
that Γ = X∩X′ but, even if we could verify this fact in all our examples, we could
not provide of a complete proof of it.

Remark 4.2.6. We emphasize that given the line V(x0, x1), we can consider the
matrix

M =


λ1

01 l101 q1
0123

λ2
01 l201 q2

0123

λ3
01 l301 q3

0123

λ4
01 l401 q4

0123


where the entries li01 and λi01 are linear polynomials in the variables x0, x1 and the
entries qi0123 are quadratic polynomials in the variables x0, x1, x2, x3. Let Φ be the
determinantal map of the 3×3 minors of M . In this case, the torsion component T

of X has ideal IT = (x0, x1,
3∑
i=0

yiq
i+1
0123) and hence its decomposition in CH(P3

1×P3
2)

is h2
1(2h1+h2) and its multidegree is thus (2, 1, 0, 0) so the multidegree of the graph

Γ is (0, 4, 4, 1) and Φ is not dominant. This is why we only consider the case that
M has one of its column with linear entries and the columns of quadratic entries
which vanish over the line V(x0, x1).

Now, we can make an enumeration of the parameters of the determinantal
quarto-quartics. As we see, up to a choice of coordinate, a determinantal quarto-
quartic is the data of a matrix M such that

M1 =


a10x0 + a11x1 + a12x2 + a13x3
a20x0 + a21x1 + a22x2 + a23x3
a30x0 + a31x1 + a32x2 + a33x3
a40x0 + a41x1 + a42x2 + a43x3



M2 =


b10x0 + b11x1
b20x0 + b21x1
b30x0 + b31x1
b40x0 + b41x1



M3 =


c12000x

2
0 + c11100x0x1 + c11010x0x2 + c11001x0x3 + c10200x

2
1 + c10110x1x2 + c10101x1x3

c22000x
2
0 + c21100x0x1 + c21010x0x2 + c21001x0x3 + c20200x

2
1 + c20110x1x2 + c20101x1x3

c32000x
2
0 + c31100x0x1 + c31010x0x2 + c31001x0x3 + c30200x

2
1 + c30110x1x2 + c30101x1x3

c42000x
2
0 + c41100x0x1 + c41010x0x2 + c41001x0x3 + c40200x

2
1 + c40110x1x2 + c40101x1x3



are the respective first, second and third columns of M . This a total of 52 param-
eters. However, different choices of parameters can produce the same map Φ. This
is the case for example if we compose a matrix G ∈ Gl4(k) with M . This should
give a way to recover the following result

Proposition 4.2.7. [DH17, Proposition 4.8] The family of determinantal quarto-
quartic has dimension 46 in the Cremona group Bir(P3,P3).

However, we did not have time to push that far our results.

Determinantal quinto-quartic interlude

With our point of view of enumerating the torsion components of the projectiviza-
tion of the base ideal IZ of a determinantal quartic map, we can consider the case
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of quinto-quartics, that is maps of P3 of multidegree (1, 5, 4, 1). The resolution of
IZ still reads

0 OP3
1
(−1)2 ⊕OP3

1
(−2) O4

P3
1

IZ(4) 0.
M

(
φ0 . . . φ3

)

and Φ still has naive multidegree (d3, d2, d1, d0) = (2, 5, 4, 1). Hence, here we are
looking for a torsion component of dimension 3 influencing d3 but not d2, that is
torsion component with cohomological decomposition h3

1 in CH(P3
1 × P3

2). Those
possible torsion components are thus located above a closed point of P3. So let
choose the point V(x0, x1, x2). Since it is of codimension 3 in P3, it has to be the
support of Fitt2(IZ) i.e. support of the ideal of 1× 1 minors of M .

For instance, let

M =


λ1

012 l1012 q1
012

λ2
012 l2012 q2

012

λ3
012 l3012 q3

012

λ4
012 l4012 q4

012


where the entries li012 and λi012 are linear polynomials in the variables x0, x1, x2

and the entries qi012 are quadratic polynomials whose monomials are all divisible
by the variables x0, x1, x2 but else general in those conditions. The map of 3 × 3
minors of M has then multidegree (1, 5, 4, 1).

Proposition 4.2.8. Let z be a point in P3 and let z1 = p∗1z. Now let M be a
matrix such that p∗1M is very general in

H0
(
Iz1(1, 1)2 ⊕ Iz1(2, 1)

))
.

Then the determinantal map Φ associated to the 3×3-minors of M has multidegree
(1, 5, 4, 1) i.e. is a quinto-quartic.

Proof. In the same way as in the proof of Proposition 4.2.2, the projectivization
X of the base ideal sheaf I of Φ has two reduced components. One is the blow-
up Γ of Φ, the other is V(z1) which has multidegree (1, 0, 0, 0). Hence, since the
multidegree of X is (2, 5, 4, 1), the multidegree of Γ is (1, 5, 4, 1) which is thus the
multidegree of Φ.

Computationally we observe that the base locus Z of a general determinantal
quinto-quartic is a curve of degree 11 and arithmetic genus 14, singular at the
support of the torsion component. Its inverse is a determinantal quintic whose base
locus Z ′ is the union of two singular curve of degree 9, one of arithmetic genus 7,
the other of arithmetic genus 8. We give the computation with Macaulay2. We
make the computation over Z/5Z because it is much simpler. In order to impose
the general conditions on polynomials whose monomials are divisible by x0, x1, x2

we give a weight to each variable x0, x1, x2, x3 at first.

i1 : k = ZZ/5

o1 = k
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o1 : QuotientRing

i2 : R = k[x_0,x_1,x_2,x_3,Degrees=>{{1,0,0,0},{0,1,0,0},

{0,0,1,0},{0,0,0,1}}]

o2 = R

o2 : PolynomialRing

We then define the polynomials in the matrix M .

i3 : Q1 = random({2,0,0,0},R)+random({1,1,0,0},R)+

random({1,0,1,0},R)+random({1,0,0,1},R)+random({0,2,0,0},R)+

random({0,1,1,0},R)+random({0,1,0,1},R)+random({0,0,2,0},R)+

random({0,0,1,1},R)

2 2 2

o3 = x - 2x x - x - x x + 2x x - 2x + x x

0 0 1 1 0 2 1 2 2 0 3

o3 : R

i4 : Q2 = random({2,0,0,0},R)+random({1,1,0,0},R)+

random({1,0,1,0},R)+random({1,0,0,1},R)+random({0,2,0,0},R)+

random({0,1,1,0},R)+random({0,1,0,1},R)+random({0,0,2,0},R)+

random({0,0,1,1},R)

2 2

o4 = - x - 2x x + x + 2x x + 2x x + x x

0 0 1 1 1 2 0 3 2 3

o4 : R

i5 : Q3 = random({2,0,0,0},R)+random({1,1,0,0},R)+

random({1,0,1,0},R)+random({1,0,0,1},R)+random({0,2,0,0},R)+

random({0,1,1,0},R)+random({0,1,0,1},R)+random({0,0,2,0},R)+

random({0,0,1,1},R)

2 2 2

o5 = - x + 2x - x x + 2x x + x - 2x x + 2x x

0 1 0 2 1 2 2 0 3 2 3

o5 : R
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i6 : Q4 = random({2,0,0,0},R)+random({1,1,0,0},R)+

random({1,0,1,0},R)+random({1,0,0,1},R)+random({0,2,0,0},R)+

random({0,1,1,0},R)+random({0,1,0,1},R)+random({0,0,2,0},R)+

random({0,0,1,1},R)

2 2 2

o6 = x - x x - 2x - x x - 2x x - x + x x

0 0 1 1 0 2 1 2 2 2 3

o6 : R

i7 : L1 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o7 = -x

0

o7 : R

i8 : L2 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o8 = 2x + 2x - x

0 1 2

o8 : R

i9 : L3 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o9 = 2x + 2x

0 1

o9 : R

i10 : L4 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o10 = 2x - 2x

1 2

o10 : R

i11 : K1 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o11 = x + x + x

0 1 2
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o11 : R

i12 : K2 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o12 = -x

1

o12 : R

i13 : K3 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o13 = 2x - 2x + x

0 1 2

o13 : R

i14 : K4 = random({1,0,0,0},R)+random({0,1,0,0},R)+

random({0,0,1,0},R)

o14 = 2x - 2x + 2x

0 1 2

o14 : R

i15 : M = matrix{{Q1,Q2,Q3,Q4},{L1,L2,L3,L4},{K1,K2,K3,K4}}

o15 = | x_0^2-2x_0x_1-x_1^2-x_0x_2+2x_1x_2-2x_2^2+x_0x_3

| -x_0

| x_0+x_1+x_2

--------------------------------------------------

-x_0^2-2x_0x_1+x_1^2+2x_1x_2+2x_0x_3+x_2x_3

2x_0+2x_1-x_2

-x_1

--------------------------------------------------

-x_0^2+2x_1^2-x_0x_2+2x_1x_2+x_2^2-2x_0x_3+2x_2x_3

2x_0+2x_1

2x_0-2x_1+x_2

--------------------------------------------------

x_0^2-x_0x_1-2x_1^2-x_0x_2-2x_1x_2-x_2^2+x_2x_3 |

2x_1-2x_2 |

2x_0-2x_1+2x_2 |

3 4

o15 : Matrix R <--- R
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i16 :

T = k[x_0,x_1,x_2,x_3]

o16 = T

o16 : PolynomialRing

i17 : M = sub(M,T);

i18 : I = minors(3,M);

i19 :

degree I,genus I

o19 = (11, 14)

o19 : Sequence

i20 : time primaryDecomposition I

-- used 0.131974 seconds

We do not print the output corresponding to the command primaryDecomposition
of I but the result is that V(I) is irreducible because there is one element in the
resulting list.

i21 :

time radical (primaryDecomposition ideal singularLocus I)_0

-- used 1.13423 seconds

o21 = ideal (x , x , x )

2 1 0

o21 : Ideal of T

i23 : loadPackage "Cremona";

o23 = Cremona

o23 : Package

i24 : psi = toMap(minors(3,M));

o24 : RingMap T <--- T

i28 : projectiveDegrees psi

o28 = {1, 4, 5, 1}
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o28 : List

i30 : phi = inverseMap psi;

o30 : RingMap T <--- T

i31 :

idPhi = ideal( phi(x_0) , phi(x_1) , phi(x_2) , phi(x_3));

i32 : betti res idPhi

0 1 2

o32 = total: 1 4 3

0: 1 . .

1: . . .

2: . . .

3: . . .

4: . 4 2

5: . . .

6: . . 1

o32 : BettiTally

Remark 4.2.9. Let us remark that we could determine the multidegree of Φ
without using the Cremona package. Indeed, the torsion component T is supported
over V(x0, x1, x2) so we can saturate X in order to recover the blow-up of I. This
is the content of the following code. We start the previous code at the line o21.

i22 : S = T[y_0,y_1,y_2,y_3]

o22 = S

o22 : PolynomialRing

i23 : J = ideal( matrix{{y_0,y_1,y_2,y_3}}*sub(transpose M,S));

o23 : Ideal of S

i24 : Graph = saturate(J,sub(ideal(x_0,x_1,x_2),S));

o24 : Ideal of S

Via the generator of the ideal Graph we can then compute the kth projective
degree dk of Φ by intersecting Γ with the plane of P3 × P3 of class h3−k

1 hk2 . We
provide one command for the computation of d3 (the other projective degree can
be computed in a similar way).

i25 : H3 = ideal (matrix{{y_0,y_1,y_2,y_3}}*

random(S^{4:{1,1}},S^{3:{1,1}}));
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o25 : Ideal of S

i26 : F3 = Graph+H3;

o26 : Ideal of S

i27 : PDF3 = primaryDecomposition F3

o27 = {ideal (x - x , x - x , x + x , y , y - 2y , y + y ),

2 3 1 3 0 3 3 1 2 0 2

------------------------------------------------------------

3

ideal (y , y , y , y ), ideal (x , x , x , y , y - 2y , y + y , y )}

3 2 1 0 2 1 0 3 1 2 0 2 2

o27 : List

i28 : degree PDF3_0

o28 = 1

traducing the fact that d3 = 1 and that Φ is birational.

4.3 Determinantal quinto-quintics

We turn now to determinantal quinto-quintics. We emphasize that there is two
partitions of the number 5 in three positive integers, namely 5 = 1 + 1 + 3 and
5 = 1 + 2 + 2. Hence the resolution of the base ideal sheaf IZ of a determinantal
quinto-quintic is one of the followings:

(1) 0 OP3
1
(−1)2 ⊕OP3

1
(−3) O4

P3
1

IZ(5) 0M

(2) 0 OP3
1
(−1)⊕OP3

1
(−2)2 O4

P3
1

IZ(5) 0M

We propose constructions in both cases.

(1) We focus first on the case that the base ideal sheaf IZ of a determinantal
quinto-quintic Φ : P3

1 99K P3
2 has resolution

0 OP3
1
(−1)2 ⊕OP3

1
(−3) O4

P3
1

IZ(5) 0M

We denote by X the projectivization of IZ . It is the complete intersection
of two divisors of bidegree (1, 1) and one divisor of bidegree (3, 1). Hence its
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decomposition in CH(P3
1 × P3

2) is:

[X] = (h1 + h2)2(3h1 + h2) = 3h3
1 + 7h2

1h2 + 5h1h
2
2 + h3

2.

Thus the naive multidegree (d0, d1, d2, d3) of Φ is equal to (3, 7, 5, 1) i.e. if M
has a general collection of entries, Φ has multidegree (3, 7, 5, 1) (this follows
also from Proposition 4.1.4). Hence if Φ has multidegree (1, 5, 5, 1), X must
present torsion components whose multidegree adds up to (2, 2, 0, 0) which is
to say, torsion components whose total class is 2h3

1 + 2h2
1h2.

We propose two constructions for this multidegree.

(a) The first solution is to construct two torsion components each one of mu-
tidegree (1, 1, 0, 0). So we choose two lines in P3

1, for instance V(x0, x1)
and V(x2, x3) and we let

M =


λ1

01 l123 c1

λ2
01 l223 c2

λ3
01 l323 c3

λ4
01 l423 c4


where for i ∈ {1, . . . , 4}, the entries λi01 (resp. li23) are linear homo-
geneous polynomial in the variables x0, x1 (resp. x2, x3) and ci is a
homogeneous polynomial of degree 3 with all its monomials divisible by
x0x2 or x0x3 or x1x2 or x1x3.

Proposition 4.3.1. Let M be the previous matrix and assume that it
is general among the conditions we imposed. Then the determinantal
map of the 3× 3 minors of Φ is a quinto-quintic. We call such a map a
quinto-quintic of type (a).

Proof. Since the entries of M are general among the conditions we im-
posed, we have that Fitt1(IZ) is supported over the union V(x0, x1) ∪
V(x2, x3). Hence the two torsion components over the lines V(x0, x1)
and V(x2, x3) have dimension 3 and decomposition h2

1(h1 + h2) = h3
1 +

h2
1h2 in CH(P3

1 × P3
2), we refer to Remark 4.2.6 for the details of this

argument. Hence, since there is no other torsion components, the com-
ponent Γ of the graph has multidegree (3−2, 7−2, 5, 1) = (1, 5, 5, 1) i.e.
Φ is a quinto-quintic.

Example 4.3.2. An example of quinto-quintic of type (a) is the the
determinantal map of the 3 × 3 minors of the following presentation
matrix:

M =


x0 x2 + x3 x2

0x2 + x0x1x2 + x0x
2
3

3x0 + x1 x2 + 2x3 x2
1x3 + x1x2x3

x0 + x1 x2 x1x
2
2 + x0x1x3

x0 + 2x1 x3 x2
0x3 + x1x

2
3


The base locus Z of Φ has degree 18 and is the union of the two lines
V(x0, x1) and V(x2, x3) and an irreducible smooth curve of degree 12
and genus 9. Moreover this latter curve is 8-secant to V(x0, x1) and
8-secant V(x2, x3).
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Remark 4.3.3. In all the examples of quinto-quintic of type (a) we have
considered, the inverse was also of type (a) but we could not establish
this fact in all generality.

(b) We turn now to the construction of a single torsion component of mul-
tidegree (2, 2, 0, 0). As we said in the introduction, for the moment, we
only control the reduced structure of X which, concerning the location
of the torsion components, is computed by the fitting ideal of the base
ideal sheaf IZ . Hence, our strategy is to construct a torsion compo-
nent with big enough multidegree supported over a line, for example
V(x0, x1).

For instance, consider the matrix

M =


l10123 l101 c101

l20123 l201 c201

l30123 l301 c301

l40123 l401 c401


where for all i ∈ {1, . . . , 4} li0123 is a linear homogeneous polynomial
in the variables x0, x1, x2, x3, li01 is a linear homogeneous polynomial in
the variables x0, x1 and ci01 is a cubic homogeneous polynomial whose
monomials are divisible by x2

0 or x0x1 or x2
1. If the entries of M are

general under those conditions, our conjecture is that the associated
determinantal map is a quinto-quintic. We call determinantal quinto-
quintic of type (b). An example of such a quinto-quintic is as follows,
the computation showing this result and the properties of the base locus
was made with Macaulay2.

Proposition 4.3.4. Let

M =


x0 x0 + x2 + x3 x3

0 + x2
0x1 + x3

1 + 2x2
0x2

x1 x1 + x3 2x3
1 + x2

0x2 + x0x1x3

x0 + x1 x2 + x3 2x2
0x2 + x0x1x2 + x2

0x3

x0 x2 + x3 x3
1 + 2x0x1x2 + x2

1x2 + x2
1x3

 .

Then the determinantal map associated to 3×3 minors of M is a quinto-
quintic (of type b).

Its base locus ideal IZ has degree 18 and is the union of a smooth irre-
ducible curve of genus 8 and degree 11 and the line V(x0, x1). Moreover
the curve is 8 secant to V(x0, x1). The inverse of Φ is also a quinto-
quintic of type (b).

(2) We turn now to the case that the base ideal sheaf IZ of a determinantal
quinto-quintic Φ : P3 99K P3 has resolution

0 OP3(−1)⊕OP3(−2)2 O4
P3 IZ(5) 0.M

If M is general in H0(OP3(1)⊕OP3(2)2), the decomposition of X in CH(P3×
P3) is:

[X] = (h1 + h2)(2h1 + h2)2 = 4h3
1 + 8h2

1h2 + 5h1h
2
2 + h3

2
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where h1 = c1
(
p∗1
(
OPn(1)

))
and h2 = c1

(
p∗2
(
OPn2 (1)

))
so

(d3, d2, d1, d0) = (4, 8, 5, 1).

In this case, our strategy is to construct one torsion component with dimen-
sion strictly bigger than n, for instance, by providing the vanishing of M over
the line V(x0, x1). Here, X is no more a complete intersection so the naive
multidegree of the associated map is not (4, 8, 5, 1) anymore.

Hence, consider the matrix

M =


l101 k1

01 q1
01

l201 k2
01 q2

01

l301 k3
01 q3

01

l401 k4
01 q4

01


where for all i ∈ {1, . . . , 4} li01 is a linear homogeneous polynomial in the
variables x0, x1 and ki01 and qi01 are quadric homogeneous polynomials whose
monomial are divisible by x0 or x1. We observe that if the entries of M are
general among those conditions, then the determinantal map of 3 × 3 mi-
nors of M is a quinto-quintic whose inverse is a determinantal quinto-quintic
whose projectivization of base locus X′ has also a single torsion component
supported over a line. An example of such a quinto-quintic is as follows,
the computation showing this result and the properties of the base locus was
made with Macaulay2.

Proposition 4.3.5. Let

M =


2x0 + x1 2x2

1 + x0x3 x2
0 + x0x3

x0 x1x2 + x1x3 x2
0 + x0x1 + x1x2

x0 + x1 x2
0 + x0x2 x0x1 + x2

1

x0 x2
0 + x2

1 x2
0 + x1x2 + x1x3

 .

Then the determinantal map associated to the 3×3 minors of M is a quinto-
quintic.

Its base locus ideal IZ has degree 17 and is the union of a smooth irreducible
curve of genus 8 and degree 11 and the line V(x0, x1). Moreover the curve
is 8-secant to V(x0, x1). The inverse of Φ is also a quinto-quintic of of the
same type.

4.4 Higher degree and higher dimension

To finish this section, we propose now a summary of our investigation until now.
Instead of writing explicitly the conditions under which the entries of the ma-
trix M has to be taken general, we write an example of matrix whose associated
determinantal map should represent the general properties of the family.
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4.4.1 Some families of P3

Multidegree Example Base locus Z

(1, 4, 4, 1)

(112)
−x1 x0 −x21 + x0x3
x0 x1 x20 − x1x2
0 x2 x0x1 − x1x3
0 x3 −x0x1 + x0x2


Z has degree 11 and is the union
of a smooth irreducible curve C of
degree 8 and genus 5 and a line l.
The curve C is 5-secant to l.

(1, 5, 4, 1)

(112)
x2 x1 x20 + x0x3

x0 + x2 x0 + x2 x20 + x1x3
x0 + x1 0 x1x3 + x2x3

0 x2 x20 + x1x2


Z is an irreducible curve C of de-
gree 11 and arithmetic genus 14
singular in one point.

(1, 5, 5, 1)

(113(a))


x0 x2 + x3 x20x2 + x0x1x2 + x0x23

3x0 + x1 x2 + 2x3 x21x3 + x1x2x3
x0 + x1 x2 x1x22 + x0x1x3
x0 + 2x1 x3 x20x3 + x1x23


Z has degree 18 and is the union
of a smooth irreducible curve C of
degree 12 and genus 9 and two lines
l1 and l2. The curve C is 8-secant
to l1 and 8-secant to l2.

(113(b))
x0 x2 + x3 x20x2 + x0x1x2 + x0x23

3x0 + x1 x2 + 2x3 x21x3 + x1x2x3
x0 + x1 x2 x1x22 + x0x1x3
x0 + 2x1 x3 x20x3 + x1x23


Z has degree 18 and is the union
of a smooth irreducible curve C of
degree 11 and genus 8 and one line
l. The curve C is 8-secant to l.

(122)


2x0 + x1 2x21 + x0x3 x20 + x0x3

x0 x1x2 + x1x3 x20 + x0x1 + x1x2
x0 + x1 x20 + x0x2 x0x1 + x21
x0 x20 + x21 x20 + x1x2 + x1x3


Z has degree 17 and is the union
of a smooth irreducible curve C of
degree 11 and genus 8 and one line
l. The curve C is 8-secant to l1 and
8-secant to l2.

We emphasize that in the example of quinto-quintic of type (122), the projec-
tivization X has a torsion component of dimension 4 above the line V(x0, x1).
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Multidegree Example Base locus Z

(1, 7, 5, 1)

(113)
x0 + x2 x2 x30 + x31 + x0x22 + x32 + x0x1x3
x0 + x1 x1 + x2 x20x1 + x31 + x0x22 + x22x3
x2 x0 x20x2 + x0x1x2 + x21x2 + x1x2x3

x0 + x1 x2 x0x21 + x20x3 + x21x3 + x1x2x3


Z is a singular irreducible
curve of degree 18 and arith-
metic genus 39.

(1, 6, 6, 1)

(114(a))


x0 x2 x21x

2
2 + x20x2x3 + x20x

2
3

x1 x2 x20x1x2 + x20x
2
2 + x30x3 + x0x1x2x3

x0 + x1 x2 − x3 x20x1x2 + x31x2 + x20x1x3 + x20x2x3
x0 + x1 x3 x0x21x2 + x31x2 + x20x2x3 + x21x

2
3



Z has degree 27 and is the u-
nion of a smooth irreducible
curve C of degree 17 and genus
15 with one lines l1 of degree
7 and another line l2 of degree
3. The curve C is 13-secant to
l1 and 11-secant to l2.

(114(b))


x0 x0 + x2 + x3 x40 + x30x1 + x30x2
x1 x1 + x2 + x3 x30x3 + x0x21x3

x0 + x1 x0 + x2 x40 + x20x
2
1 + x31x2

2x0 + x1 x1 + x3 x41 + x30x2 + x31x3


Z has degree 27 and is the u-
nion of a smooth irreducible
curve C of degree 14 and genus
11 and one line l. The curve
C is 11-secant to l.

(123)


x0 + 2x1 x1x2 + x0x3 x30 + x20x1 + x0x1x3

x1 x21 + x1x3 x31 + x20x2
x0 + x1 x0x2 + x1x3 x0x1x2 + x20x3
2x0 + x1 x20 + x0x1 x21x2 + x21x3


Z has degree 25 and is the u-
nion of a smooth irreducible
curve C of degree 14 and genus
11 and one line l. The curve
C is 11-secant to l1.

(222)


x0x2 + x0x3 x0x2 x0x1 + x1x2 + x0x3
x0x1 + x1x2 x0x1 + x0x3 x0x2 + x1x2 + x0x3
x0x1 + x0x3 x1x2 + x0x3 x0x1 + 2x0x2 + x0x3
x0x2 + 2x1x2 x0x1 + x1x2 x0x2 + x1x2



Z has degree 24 and is the u-
nion of an irreducible curve C
of degree 12 and genus 11 and
two secant lines l1 and l2 of
degree 6 each. The curve C
is singular at the intersection
point of l1 and l2 and is 6-
secant to l1 and 6-secant to l2.

Remark 4.4.1. Let us emphasize also that it would be interesting to know if, given
a determinantal birational map or even a birational map with locally free sheaf of
relations, its inverse is also determinantal or has locally free sheaf of relations. Our
observations are that the inverse of determinantal birational map of certain type
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(for example a quinto-quintic of type (b)) are determinantal of the same type. This
leads us to the following conjecture.

Conjecture 4.4.2. The inverse of determinantal birational map of a certain type
is determinantal of the same type.

4.4.2 Incursion in higher dimension

As a single example in P4, we consider the determinantal map Φ of the 4×4 minors
of the matrix 

x0 x1 x0 x2
0 + x1x2

x1 x2 x1 x0x1 + x1x3

x0 + x1 x3 x2 x0x2 + x1x4

x0 + 2x1 x4 x3 x2
0 + x0x3

x0 x0 x4 x2
1 + x0x4

 .

Using Macaulay2, we can say that Φ has multidegree (1, 5, 8, 5, 1) (and naive mul-
tidegree (2, 7, 9, 5, 1)). However, the computation of the primary decomposition
becomes unsustainable and we cannot describe yet what are the surfaces involved.
We conjecture that the general determinantal map of this family has a base locus
Z which is the union of an irreducible smooth surface S with resolution:

OP4(−9)
OP4(−6)4

⊕
OP4(−8)2

OP4(−4)
⊕

OP4(−5)4

⊕
OP4(−7)

OP4 OS 0

and a plane P and that S and P intersect along a curve of degree 7 and arithmetic
genus 15.

Pushing further this construction where P1 = p∗1P and P is (n− 2)-plane of Pn
with n ≥ 3, and where we choose a matrix M such that p∗1M is general in

H0
(
IP1(1, 1)⊕OPn×Pn(1, 1)n−2 ⊕ IP1(2, 1)

)
,

we should be able to construct a determinantal birational map with multidegree
(1, Tn1 , T

n
2 , . . . , T

n
n−1, 1) where Tnk =

(
n
k

)
+
(
n−2
k−1

)
are the coefficients of the 3-Pascal

triangle (see https://oeis.org/A028262). That is we should be able to construct
the following multidegree

Projective space Multidegree of Φ
P3 (1, 4, 4, 1)
P4 (1, 5, 8, 5, 1)
P5 (1, 6, 13, 13, 6, 1)
P6 (1, 7, 19, 26, 19, 7, 1)

This conjecture is purely experimental and verified from P4 to P6.

https://oeis.org/A028262
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4.5 Homaloidal complete intersections

To finish this section let us present the following generalisation of homaloidal hy-
persurfaces.

Definition 4.5.1. Let n ≥ 1, 1 ≤ k ≤ n and let g1, . . . , gk ∈ k[x0, . . . , xn] be k
homogeneous polynomials of degree d1, . . . , dk. Let denote

M =

(g1)0 . . . (g1)n
. . . . . . . . .

(gk)0 . . . (gk)n


the jacobian matrix associated to g0, . . . , gk that is (gj)i =

∂gj
∂xi

and let φ0, . . . ,
φ(n+1

k ) be the k × k-minors of M . We call the map

Φci : Pn P(n+1
k )−1

x
(
f0(x) : . . . : fN (x)

)
where N =

(
n+1
k

)
− 1, the polar map of the complete intersection (g1, . . . , gk). We

call the complete intersection homaloidal if Φci is birational onto its image.

Remark 4.5.2. When the complete intersection is generated by n homogeneous
polynomials g1, . . . , gn, we recover a map Φci : Pn 99K Pn. This is the reason why
this notion of homaloidal complete intersection fits in this chapter about locally
free sheaf of relations. Indeed, since the jacobian matrix M of (g1 . . . gn) has
size n × (n + 1), Hilbert-Burch theorem [Eis95, 20.15.b] states that that M is a
presentation matrix for its ideal I of maximal minors if depth(I) ≥ 2. But this
is just taking care of the fact that V(I) has codimension greater than 2. In other
words, if V(I) has expected codimension, the sheaf of relations of I is split and a
locally free resolution of I reads:

0
n
⊕
i=1
OPn(−ai) On+1

Pn I(δ) 0M

One first result in this context is that, when n = 2, there there is no limit in
the degree of a homaloidal complete intersection.

Proposition 4.5.3. Let r ≥ 2, the complete intersection defined by x0x1, x
r
1 +

xr−1
0 x2 of P2 are homaloidal.

Proof. The polar map Φci is defined by the polynomials
−rxr1 + (r − 1)xr−1

0 x2

−xr−1
0 x1

−xr0.

It is a computation to show that Φci has an inverse defined by

−(r − 1)xr2,−(r − 1)x1x
r−1
2 ,−rxr1 + x0x

r−1
2 .
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Another result is as follows. It is classical result (see [Dés12, Subsection 4.5.2])
that there are three types of quadratic Cremona maps up to left right conjugacy,
namely the standard Cremona map with representative τ = (x1x2, x0x2, x0x1), the
quadratic linear system with two indeterminacy points and one base point infinitely
near one of the indeterminacy points (see [Dés12, Section 1.2] for the definitions
indeterminacy and infinitely near base point) with representative

τ ′ = (−2x2
1 + x0x2 + 2x1x2,−x0x1,−x2

0 − 2x0x1),

the quadratic linear system with three base point infinitely near to each others
with representative

τ ′′ = (x0x2 − x2
1,−x1x0, x

2
0).

We see from the classification of complex homaloidal curves that only τ and τ ′′ can
be realised as the polar of homaloidal curve. Concerning complete intersection of
2 curves in P2, we have:

Proposition 4.5.4. All Cremona maps of P2 of algebraic degree 2 can be realised
as the polar map of the complete intersection of two quadrics.

Proof. The quadratic map τ is the polar of the complete intersection of q1 =
x2
0+x2

1

2

and q2 =
−x2

0+x2
2

2 .
The quadratic map τ ′ is the polar of the complete intersection of q′1 = x2

1 +x0x2

and q′2 = x1(x1 + x0).
The quadratic map τ ′′ is the polar of the complete intersection of q′′1 = x2

1+x0x2

and q′′2 = x1x0.

Remark 4.5.5. In general, the polar map Φci of k hypersurfaces in Pn factors
through the Grassmanian Grassk(kn+1) of k-plane in kn+1. This leads us to the
following questions concerning this problem of homaloidal complete intersection:
what is the multidegree of Φci with respect to the generators of the cohomology of
the Grassmanian?

Another perspective would also be to classify homaloidal complete intersections
with ”small” singularities.



Chapter 5

Free and nearly free sheaves of
relations

Let X be the projective plane P2 over an algebraically closed field k and let I be
an ideal sheaf generated by three global sections φ0, φ1, φ2 of OP2(δ) for δ ≥ 1. In
this situation we identify φ0, φ1, φ2 with homogeneous polynomials in the variables
x0, x1, x2 of degree δ. Let

⊕
i≥1
OP2(−i)ai O3

P2 I(δ) 0

E

M (φ0 φ1 φ2)

be the sheafification of a minimal presentation of the ideal I = (φ0, φ1, φ2) and
where E is the image sheaf of M , i.e. the sheaf of relation of I, see Definition 4.0.1.

Since E is reflexive of rank 2, we have the following result.

Proposition 5.0.1. [Har80] The sheaf E is locally free of rank 2.

Hence, in the perspective of studying the projectivization X of I, this is a case
of interest because we can attempt to relate geometric properties of E , for instance
its Chern classes, to geometric properties of X exactly in the same spirit as in
Chapter 4.

Let us explain also our initial motivation for studying this problem. Let f ∈
k[x0, x1, x2] be a square free polynomial of degree d and let I be the jacobian ideal
sheaf of f , i.e. the ideal sheaf generated by the partial derivatives fi = ∂f

∂xi
of f .

Definition 5.0.2. [Dim15, Definition 2.1] Letting E be the sheaf of relations of I,
the curve F = V(f) is free if E is split. If E is split and E ' OP2(−d1)⊕OP2(−d2)
then F is free of exponent (d1, d2).

The curve F = V(f) is nearly free of exponents (d1, d2) with 1 ≤ d1 ≤ d2 if the
jacobian ideal I of F has the following resolution

0 OP2(−d2 − 1) OP2(−d1)⊕OP2(−d2)2 O3
P2 I(d− 1) 0

where d is the degree of F .

103
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See Definition 5.1.1 for the generalisation of these definition. Recall also the
definition of Tjurina numbers.

Definition 5.0.3. Let Z = V(I) be the singular locus of a hypersurface F = V(f)
and let z ∈ Z. Via a change of coordinates, suppose that z = (1 : 0 : 0).

The local Tjurina number at z, denoted by τf (Z, z) is defined by

τf (Z, z) = length
(
Ok2,z/(f[, (f[)1, (f[)2)

)
where (f[)i =

∂f[
∂xi

.

The global Tjurina number of F , denoted by τf (Z) is the sum
∑
τf (Z, z) over

all z ∈ Z.

A result of A.A. du Plessis and C.T.C.Wall in [dPW99] identifies in particular
complex curves F of a given degree d with maximal possible global Tjurina number
which are not cones (or else E has a non trivial factor). These are the free curves
of exponents (1, d− 2).

But the data of the global Tjurina number of F is equivalent to the data of the
second Chern class of E via the relation

c2(E) = (d− 1)2 − τf (Z)

and let us explain why. Let

0 E O3
P2 I(d− 1) 0

(f0 f1 f2)
(P6)

be the defining exact sequence of E where fi = ∂f
∂xi

for i ∈ {0, 1, 2}. Now, consider

a general morphism O2
P2 → I(d − 1), let W be the support of its cokernel. This

situation is summed up by the following commutative diagram:

O2
P2 = O2

P2

0 E O3
P2 I(d− 1) 0

OP2 OW 0

(φ0 φ1 φ2)

Since the global Tjurina number is just the length of the scheme V(I), we have that
length(W ) = (d−1)2−τf (Z). Moreover there is an exact sequence E → OP2 → OW
and recall Proposition 1.2.6 that if W has codimension 2 then the class [W ] of W
in the Chow group CH2(P2) is the second Chern class of the dual E∨ of E . But
since E has rank two, c2(E) = c2(E∨) and, by identifying Chern classes and integers
since CH2(P2) ' Z, where we fix a generator to be the class of a point in P2, we
have the relation c2(E) = (d− 1)2− τf . Hence the identification of curves with the
highest global Tjurina number is equivalent to that of the curves such that c2(E)
is the smallest possible.

Recall that we defined also a generalised Tjurina number in Definition 2.2.21
for any ideal sheaf I of P2 generated by three global sections of OP2(δ). This is
just the length of the scheme V(I). So for us, a main motivation is to elaborate a
similar criterion to split the sheaf of relations E . Roughly, one result in this chapter
is as follows:
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Theorem 5.0.4. Let I be an ideal sheaf over P2 generated by three linearly inde-
pendant global sections φ0, φ1, φ2 of OP2(δ) and let E be the sheaf of relations of I
defined as the kernel of the map O3

P2 → I(δ).

(1) Then −c1(E) ≤ c2(E)+1 and equality holds if and only if E is free of exponents(
1, c2(E)

)
.

(2) In the case c1(E) ≤ −5, E is nearly free of exponents
(
1, c2(E)

)
if and only if

−c1(E) = c2(E).

We emphasize that Theorem 5.0.4 is precisely a generalisation of the former
result in [dPW99] since we identify free sheaves of exponents

(
1, c2(E)

)
with sheaves

of relations with the smallest second Chern class possible.
The second part of this chapter is the classification of the reduced complex

plane curves with respect to the second Chern class of their sheaves of relations,
that is, we classify curves of degree d and c2(E) = (d − 1)2 − τf . To establish it,
recall that the polar degree of those curves, i.e. the topological degree of their polar
map is equal to (d− 1)2 − µf . Hence we simply consider the existing classification
of plane curves with given polar degree in [FM12] and we adapt it in the cases
where Tjurina numbers differ from Milnor numbers.

5.1 Identification of free and nearly free sheaves

For this subsection, O stands for OP2 . For i ∈ {1, 2}, we denote by ci(E) the first
and second Chern classes of E and we identify the Chern classes with their degree
in Z.

Definition 5.1.1. A vector bundle F of rank 2 over P2 is said to be free of
exponents (d1, d2) if there exists (d1, d2) ∈ N∗2 such that F ' O(−d1)⊕O(−d2).

It is said to be nearly free of exponents (d1, d2) if it has a graded free resolution
of the form:

0 O(−d2 − 1) O(−d1)⊕O(−d2)2 F 0.
(φ0 φ1 φ2)

Definition 5.1.2 ([DS15]). In the case where φ0 = f0, φ1 = f1, φ2 = f2 are
the partial derivatives of a given squarefree polynomial f ∈ k[x0, x1, x2], the curve
F = {f = 0} is called free (resp. nearly-free) if E in (P6) is free (resp. nearly-free).

As we explained in the introduction of this section, the maximality of the Tju-
rina number is equivalent to the minimality of the second Chern class c2(E) of the
vector bundle E associated to F . Theorem 5.0.4 is thus a generalisation of the
result of du Plessis-Wall. We emphasize that in this case c1(E) is negative and
c2(E) is positive.

Proof of Theorem 5.0.4. We denote by c1 and c2 respectively the first Chern class
c1(E) and the second Chern class c2(E) of E . We let c = −1− c1 ≥ 0 and

m = min{t ∈ Z, H0
(
P2, (E(t)

)
6= 0}.
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(1) Assume that c2 ≤ c. We are going to show that the only possibility is that
c2 = c and m = 1. First, m > 0 since otherwise, if 0 6= s ∈ H0(P2, E) we
would have had E ' O ⊕O(−1− c) which contradicts the fact that c2 > 0.

Now, let s ∈ H0
(
P2, E(m)

)
be a non zero section. Since m is minimal, we

have the following exact sequence:

0 O(−m) E IL(m− 1− c) 0 (E7)

where L ⊂ P2 is a 0-dimensional subscheme of length l ≥ 0. It is a com-
putation to show that l = c2 − m(c + 1 − m) ≥ 0, and since c2 ≤ c, we
have

c(1−m) ≥ m(1−m). (5.1.1)

So

(i) if m = 1, then l = 0, i.e. IL(m−1− c) = O(m−1− c) and the sequence
(E7) splits showing that E ' O(−1)⊕O(−c),

(ii) if m ≥ 2 then m ≥ c.

Now, assume by contradiction thatm ≥ 2. First, it follows from the Riemann-
Roch formula that:

χ
(
E(1)

)
=

8− 2c2 − 3c+ c2

2
≥ 8− 5c+ c2

2
.

Hence χ
(
E(1)

)
> 0 for all c. On the other hand, since m ≥ 2, by (ii), m ≥ c

and we have H0
(
P2, E(1)

)
= H2

(
P2, E(1)

)
= 0 where the second vanishing

follows from the first, using Serre-duality H2
(
P2, E(1)

)
' H0

(
P2, E(c− 3)

)∨
.

These two vanishings contradict the fact that χ
(
E(1)

)
> 0. Summing up, if

c2 ≤ c, the only possibility is c2 = c and then E ' O(−1) ⊕ O(−c) which
completes the proof of (1).

(2) It is a computation to show that if E is nearly free of exponents (1, c2), then
c2 = c + 1 = −c1. Now, we assume that c2 = c + 1 and that c ≥ 4 and we
show that E is nearly-free of exponents (1, c2). In this case, from (E7) we
have the inequality

c(1−m) ≥ m(1−m)− 1 (5.1.2)

so:

(i) m ≥ 3 implies m ≥ c (because in this case (5.1.2) is equivalent to
c ≤ m − 1

1−m ) and thus H2
(
P2, E(1)

)
= H0

(
P2, E(1)

)
= 0. But the

Riemann-Roch formula implies that

χ
(
E(1)

)
= (c−2)(c−3)

2 ,

hence χ
(
E(1)

)
> 0 for c ≥ 4. As above this leads to a contradiction and

so this case does not occur.

(ii) m = 2 implies c ≤ 3, a case excluded by the assumption c ≥ 4.
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(iii) m = 1 implies that l = 1 where l is the length of the scheme L as in the
exact sequence (E7). Now, using the resolution of a point p in P2, we
get the following diagram:

0

0 O(−1) E Ip(−c) 0

O(−1− c)2

O(−2− c)

0

α

β

where the existence of β is provided by the vanishing of Ext1(O(−1 −
c)2,O(−1)) (see also [MV17] for more details in this direction). Since
E is locally free of rank 2, the complex (E8) provides a locally free
resolution of E showing that E is nearly-free of exponent (1,−1 − c),
that is, E has the resolution:

0 O(−c− 2) O(−1)⊕O(−c− 1)2 E 0. (E8)

As an application we recover [DHS12, Corollary 2.6] but with a different proof.
Recall that I is said to be of linear type if the projectivization X of I coincide with
the Proj X̃ of the Rees algebra of I (see Definition 2.2.10). With the definitions of
Milnor and Tjurina numbers given in Definition 2.2.21, recall that the ideal sheaf
IZ of a 0-dimensional scheme Z in a quasi-projective variety X is of linear type if
and only if µ(Z) = τ(Z).

Corollary 5.1.3. Let I = (φ0, φ1, φ2) be an ideal sheaf generated by three homo-
geneous polynomials of degree δ without common factor. Assume that I is of linear
type then the associated map Φ is birational only if δ ≤ 2.

Proof. Indeed, letting E be as in (P6), we have that c2(E) = dt(Φ). But c1 = −δ
so the only possibility to have dt(Φ) = 1 is that δ ≤ 2.

Let focus on another special resolution of a vector bundle E of rank 2 over P2.
In the following, we assume that E ⊂ OrP2 for a given r ∈ N in order to have

h0(P2, E) = 0. Recall that such a bundle can be thought as in the exact sequence
(P6).

Definition 5.1.4. We say that E is almost nearly free of exponent (d1, d2) if it
has the following resolution:

0 O(−d2 − 2) O(−d1)⊕O(−d2)⊕O(−d2 − 1) E 0.
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Example 5.1.5. We say that a curve in P2 is almost nearly free if E in the exact
sequence (P6) is almost nearly free. For instance, the curve

F = V
(
(x4

1 + x3
0x2)(x2 + x1)

)
is almost nearly free of exponents (2, 3) (a result we find by computing a free
resolution of the jacobian ideal of F via Macaulay2).

Proposition 5.1.6. Let E be a rank 2 vector bundle over P2 with c1(E) = −1− c
and with 1 ≤ c2(E) = c+ 2.

If c ≥ 5 then E is almost nearly free of exponent (1, c2(E)− 1).

We give the proof of such a statement to show how the definition of almost
nearly free vector bundles is analogous to the one of nearly free bundles.

Proof. Let m = min{t ∈ Z , h0(P2, E(t)) 6= 0}. Using the sequence (E7), we have
the inequality: c(1−m) + 2 ≥ m(1−m) that is

c+
2

1−m
≤ m

From this inegality, we get:

(i) if m ≥ 4 then c ≤ m

(ii) if m = 3 or m = 2 then c ≤ 4

(iii) if m = 1, then l = 2 where l is the length of the scheme L in the exact
sequence (E7). Since the resolution of such a scheme L in P2 is:

0 O(−3) O(−1)⊕O(−2) IL 0,

as in the proof of Theorem 5.0.4, one has:

0 O(−c− 3) O(−1)⊕O(−c− 1)⊕O(−c− 2) E 0.

But now if c ≥ 5 the case (iii) cannot happen. Indeed, if it would happen, one
would have h0(P2, E(1)) = h0(P2, E(c− 1)) = 0. The Riemann-Roch formula gives
then

χ(E(1)) =
(c− 1)(c− 4)

2
> 0

which is impossible. So E is almost nearly free of exponent (1, c+ 1).

Remark 5.1.7. We could want to find almost nearly free curves of degree d ≥ 7
with exponent (1, c2(E) − 1) But as it is stated in [dPW99, Th.3.2] in the case
where there is a first syzygy of degree one, that is with the notation of their paper,
when r = 1, we have the following inequality:

(d− 1)(d− 2) ≤ τ ≤ (d− 1)(d− 2) + 1

where τ is the Tjurina number of the curve. In our case, we would want a curve
such that τ = (d − 1)2 − d = d2 − 3d + 1 ≤ d2 − 3d − 2 = (d − 1)(d − 2) which is
impossible.
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5.2 Classification of curves by Tjurina numbers

In this section, we assume that the base field k has characteristic 0. In this case,
we propose a classification based on [FM12, Theorem 3.3] and [FM12, Theorem
3.4] of plane curves which are not cones with respect to the second Chern class of
the sheaf of relations E of the jacobian ideal sheaf of the curve. This classification
is the same except when the jacobian ideal is not of linear type, i.e. when Tjurina
and Milnor numbers of the curve differ. In the table, we specify by (d1, d2)-f. or
(d1, d2)-n.f. if the curves are respectively free of exponent (d1, d2) or nearly free of
exponent (d1, d2).

All the computation of Milnor and Tjurina numbers and of resolutions of the
jacobian ideals of the curves (in order to establish in which case the curves are free
or nearly free) were made by a case by case analysis of the explicit equations of
the curves using Macaulay2.

Theorem 5.1. A reduced plane curve with c2(E) equal to 1 is one of the following:

(1) a smooth conic,

(2) three lines in general position

(3) the union of a smooth conic with one of its tangent

(1) (2) (3)

V(x2
1 + x0x2) V(x0x1x2) V(x0(x2

1 + x0x2)
(1, 1)-n.f. (1, 1)-f. (1, 1)-f.

Proof. Let C be a curve with c2(E) = 1 and let denote by E its sheaf of relation
as in (P6). By Theorem 5.0.4, the algebraic degree d of C is 0, 1, 2 or 3. Then, a
case-by-case study gives the classification.

We obtain the classification of the curves with c2(E) = 2 as follows. In [FM12,
Theorem 3.3] the two authors gave the complete classification of curves with polar
degree 2. Hence, the curves with jacobian ideal of linear type in this classification
are curves with c2(E) = 2. Since we focus on dominant polar maps, it only remains
to add the eventual curves of degrees between 0 to 4 with jacobian ideal not of
linear type with polar degree 1 (there is none).

Theorem 5.2. A reduced plane curve with c2(E) = 2 with dominant polar map is
one of the following:

(1) three concurrent lines and a fourth line not meeting the center point,

(2) a smooth conic and a secant line,



110 CHAPTER 5. FREE AND NEARLY FREE SHEAVES OF RELATIONS

(3) a smooth conic, a tangent and a line passing through the tangency point,

(4) a smooth conic and two tangent lines,

(5) two smooth conics meeting at a single point,

(6) an irreducible cuspidal cubic,

(7) an irreducible cuspidal cubic and its tangent at the smooth flex point

(8) an irreducible cuspidal cubic and its tangent at the cusp,

(1) (2) (3)

V(x0x1x2(x0 + x1)) V(x0(x0 + x1)(x2
1 + x0x2)) V(x0(x2

1 + x0x2)
(1, 2)-f. (1, 2)-f. (1, 1)-f.

(4) (5) (6)

V(x0x2(x2
1 + x0x2)) V((x2

1 + x0x2)(x2
1 + x0x2 + x2

0)) V(x3
1 + x2

0x2)
(1, 2)-f. (1, 2)-f. (1, 2)-n.f.

(7) (8)

V(x2(x3
1 + x2

0x2)) V(x0(x3
1 + x2

0x2))
(1, 2)-f. (1, 2)-f.

As in [FM12, Theorem 3.4], we also provide the classification of plane curves
such that c2(E) = 3 and with a dominant polar map. We picture in green the plane
curve whose jacobian ideal is not of linear type.

Theorem 5.3. A reduced plane curve with c2(E) = 3 is one of the types in the
following tabular (up to a change of coordinates).
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(1) (2) (3) (4)

V(x0x1x2(x0 +
x1)(x0 + 2x1))

V(x0x1x2(x0 + x1 +
x2))

V((x21 + x0x2)(x0 +
x1)(x0 + 2x1))

V((x21 +
x0x2)x0(x0 + x2))

(1, 3)-f. (2, 2)-n.f. (2, 2)-n.f. (2, 2)-n.f.
(5) (6) (7) (8)

V(x0x2x1(x21 +
x0x2))

V((x21 + x0x2)(x
2
1 +

2x0x2))
V(x0(x21+x0x2)(x

2
1+

x0x2 + x20))

V(x0(x21 +

x0x2)(x
2
1 + 2x0x2))

(1, 3)-f. (1, 3)-n.f. (1, 3)-f., dt = 2 (1, 3)-f.
(9) (10) (11) (12)

V((x21 + x0x2)(x
2
1 +

x0x2 + x1x2))
V((x1 + x0)(x

3
1 +

x20x2))

V((x31 + x20x2)(x2 +
3x1 − 2x0))

V(x0x2(x31 + x20x2))

(2, 2)-n.f. (1, 3)-n.f. (2, 2)-n.f. (1, 3)-f.
(13) (14) (15) (16)

V(x0x1(x31 + x20x2)) V(x1x2(x31 + x20x2)) V(x21x2−x
2
0(x0+x2)) V((x0 − x1)(x

2
1x2 −

x20(x0 + x2)))
(1, 3)-f. (1, 3)-f. (2, 2)-n.f.
(17) (18) (19) (20)

V(x2(x21x2 −
x20(x0 + x2)))

V(8x0x31 − 3x41 +

12x0x
2
1x2 − 4x31x2 +

4x20x
2
2)

V(x41 − 2x0x
2
1x2 −

x31x2 + x20x
2
2)

V(x41 − 2x0x
2
1x2 −

x1x
3
2 + x20x

2
2)

(2, 2)-n.f. (2, 2)-n.f. singular points :
(1 : 0 : 0), (0 : 0 : 1)

(2, 2)-n.f.

singular point :
(1 : 0 : 0), (2, 2)-n.f.
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(21) (22) (23) (24)

V(x41 − x0x
3
2) V(x2(x41 − x0x

3
2) V(x0(x41 − x0x

3
2)) V(x41 − x31x2 + x0x

3
2)

singular point :
(1 : 0 : 0), (1, 3)-n.f.

(1, 3)-f. (1, 3)-f. singular point :
(1 : 0 : 0), (2, 2)-n.f.

We end this chapter by giving the curves with polar degree 3 and naive polar
degree c2(E) = 4.

V((x21 + x0x2)(x0 +
x1)(x0 + 2x1)x0)

V(x2(x21+x0x2)(x
2
1+

x0x2 + x1x2))
V((x21 + x0x2)(x

2
1 +

x0x2 + x20)(x
2
1 +

x0x2 + 2x20))

V(x0(x21+x0x2)(x
2
1+

x0x2 + x20)(x
2
1 +

x0x2 + 2x20))
(2, 2)-f. (2, 2)-f. (1, 4)-f. (1, 5)-f.

V(x0(x0 + x1)(x
3
1 +

x20x2))

V((x0 − x1)(x0 +

x1)(x
2
1x2 − x20(x0 +
x2)))

V(x2(x41 − 2x0x
2
1x2 −

x31x2 + x20x
2
2))

V(x2(x41 − 2x0x
2
1x2 −

x1x
3
2 + x20x

2
2))

(2, 2)-f. (2, 2)-f. (2, 2)-f. (2, 2)-f.

V(x2(x41 − x31x2 +

x0x
3
2))

(2, 2)-f.



Chapter 6

Zero-dimensional base locus

In this section, we focus on the naive multidegree of a rational map Φ : X 99K Pn
with a zero-dimensional base locus Z in a smooth quasi-projective variety X of
dimension n. Let us first present the problem we deal with. As we explained in
Chapter 4 in the case X = Pn, if the sections φ0, . . . , φn defining Φ : Pn 99K Pn
are the n + 1 minors of a matrix M of size (n + 1) × n, it is particularly easy to
compute its naive multidegree. Actually this can be done in two ways. The first
one is to consider a presentation of the base ideal sheaf IZ

0
n
⊕
i=1
OPn(−ai) On+1

Pn IZ(δ) 0.
M

The nth naive projective degree of Φ is then the length of the intersection of n

general generators
n∑
i=0

λiφi where λi ∈ k for any i ∈ {0, . . . , n} after removing the

points already in Z (see Section 1.3).
Hence the nth projective degree of Φ is the length of the scheme V(s) defined

in the following exact sequence:

OnPn IZ(δ) OV(s) 0

where the morphism OnPn → IZ(δ) is general. Now consider this morphism in the
following commutative diagram:

0

OnPn OnPn

0
n
⊕
i=1
OPn(−ai) On+1

Pn IZ(δ) 0

OPn Os 0

0 0

M

=

113
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So V(s) is also the support of the cokernel of the map E =
n
⊕
i=1
OPn(−ai) → OPn .

In other words, the class [V(s)] of V(s) in the Chow ring of Pn is the nth Chern
class of the dual E∨ of E , i.e. s is a cosection of E . Since E is in particular locally
free, we have that s is the nth Chern class of E . As such, its length (as a 0-cycle)

is particularly easy to compute in this case, it is
n∏
i=0

ai.

The second way to compute this projective degree is to consider the projec-
tivization X of IZ in Pn × Pn. Since it is a complete intersection of cohomological

class
n∏
i=1

(aih1 +h2) in CH(P×Pn), we recover that the nth naive projective degree

is
n∏
i=0

ai.

The main goal of this chapter is to establish if those two ways of computing the
naive projective degrees, namely considering cosections of E or the projectivization
X, always coincide even if E is not locally free. We summarize our result as follow,
see Theorem 6.1.1 for a more precise statement.

Theorem 6.0.1. In the case when the base locus Z is 0-dimensional, the length of
the zero scheme of a cosection of the kernel E of the evaluation map On+1

Pn → I(δ)
is equal to the nth naive projective degree.

In the case when the base locus Z is 0-dimensional, we emphasize that the
possible torsion components of X only interfere with the nth projective degree,
that is, projective degrees and naive projective degrees coincide up to the nth

projective degree. That is why we only consider two naive topological degrees, see
Definition 6.1.4 and Definition 6.1.5 which have to be understood as the two ways
of computing the nth projective degree of Φ.

6.1 First and second naive degrees

We let X be an n-dimensional smooth quasi-projective variety over k and we let
Φ : X 99K Pn be a rational map with zero-dimensional base locus Z determined by
a n+ 1-dimensional subspace V of global sections of a line bundle L over X. Our
aim is to read off the topological degree dn(Φ) of Φ from properties of the ideal
sheaf I of Z, more precisely from the sheaf of relations E defined as the kernel of
the canonical evaluation map ev : OX ⊗V→ I ⊗L (Definition 4.0.1). We set also
the notation as in the following diagram

PnX

X

X̃

X Pn

p1 p2

ι

π1 π2

σ1 σ2

Φ

(D1)
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where X is the projectivization of IZ and X̃ is the blow-up of X along Z (recall
Proposition 2.1.8 that X̃ is isomorphic to the graph Γ of Φ). By construction
the topological degree of Φ is equal to that of the restriction to X̃ of the lift
π2 : X→ P(V) of Φ. In other word dt(Φ) = deg

(
c1(OX(1) X̃)n

)
.

In this context, we can also consider two other related notions of ”naive” topo-
logical degrees: the degree deg

(
c1(OX(1))n

)
of π2, which is the definition of the

nth naive projective degree of Φ and the algebraic degree of Φ minus the length of
Z. In Proposition 6.2.2 (i) we show that the second one coincides with the degree
of the 0-cycle [V

(
cs(E)

)
] associated to the scheme of zeros of a general cosection

cs(E) : E → OX of E . Our main result, proven in Subsection 6.1.3, asserts in
particular that these two naive topological degrees coincide. It also elucidates the
relation between these degrees and the topological degree of Φ:

Theorem 6.1.1. With the notation above, X is equidimensional of dimension n
and [V

(c
s(E)

)
] = π1∗c1

(
OX(1)

)n
. As a consequence

dn(Φ) = deg
(
[V(cs(E))]

)
− deg

(
c1(OX(1) TZ )n

)
.

where TZ is the torsion part of X, see Notation 2.2.20.

Recall that the two classical invariants of singularities of a hypersurface F =
{f = 0} is the global Tjurina number τf (Z) of F and the global Milnor number
µf (Z) (see Definition 16 and Definition 8). Actually, both Milnor and Tjurina
numbers depend on the scheme structure of the singular locus, and, in this sense,
they can be defined also for zero-dimensional subschemes Z unrelated to singular
hypersurfaces. Having this in mind, recall the result Theorem 10

Theorem 6.1.2. Let f ∈ C[x0, . . . , xn] be a square free homogeneous polynomial
of degree d and let Φf be the polar map of F = V(f) ⊂ Pn. Assuming that F has
finite base locus, we have:

dn(Φf ) = (d− 1)n − µf (Z) (6.1.1)

In comparison to (6.1.1), we can formulate the following result.

Corollary 6.1.3. Formula (6.1.1) holds for any 0-dimensional subscheme Z de-
fined by n + 1 global sections of a line bundle L over a smooth quasi-projective
n-variety X and over any algebraically closed field.

This corollary follows from the observation that Tjurina numbers compute the
degree of c1

(
OX(1)

)n
whereas Milnor numbers compute the degree of c1

(
OX̃(1)

)n
.

As an immediate application we recover the identity (0.0.1) from the equalities

deg
(
[V(cs(E))]

)
= (d− 1)n − τ(Z) and deg

(
c1(OX(1) TZ )n

)
= µ(Z)− τ(Z)

where τ(Z) and µ(Z) are the generalised Tjurina and Milnor numbers.
In our setting, recall that X is equidimensional of dimension n (see Propo-

sition 2.2.19) so c1(OPnX (1) X)n is a 0-cycle on X and we can set the following
definition.

Definition 6.1.4. With the notation in (D1) the degree of c1(OPnX (1) X)n is called
the first naive topological degree of Φ.
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Intuitively, the difference between the first naive topological degree and the
actual topological degree reflects a difference between the symmetric algebra and
the Rees algebra, see Proposition 6.2.2 below for a precise statement.

Now, let E be the kernel of the evaluation map ev : On+1
X → I ⊗ L and let

α : On+1
X → OX be a general map. Since E has rank n, the zero locus V(csα) of

the composition csα = α ◦ γ is a 0-dimensional subscheme of X.

0 E On+1
X I ⊗ L 0

OX

γ ev

αcsα

In the proof of Theorem 6.1.1, we will establish in particular that the cycle class
[V(csα)] of V(csα) is independent on the choice of a general map α so, anticipating,
we set the following definition.

Definition 6.1.5. The second naive topological degree of Φ is the degree of the
0-cycle [V

(
cs(E)

)
] of a general cosection cs(E) of E .

Remark 6.1.6. If E is locally free, [V
(

cs(E)
)
] simply coincides with the top Chern

class cn(E∨) of E∨. This is no longer true when E is not locally free. For instance
the sheaf E of relations of the ideal sheaf I = (x2

1 − x1x3, x
2
2 − x2x3, x1x2, x0x3)

of P3 satisfies c3(E∨) = 4 whereas deg
(
[V(cs(E))]

)
= 2 as we can check from the

resolution of E :

0 OP3(−3)2 OP3(−1)2 ⊕OP3(−2)3 E 0.

6.1.1 Importance of the subregularity of the symmetric algebra

Recall the settings of Theorem 6.1.1, we assume that n ≥ 2, codim(Z) = n and
that the map Φ is dominant.

By definition, the first naive topological degree is the length of the 0-scheme
W of a general section of OX(1)n. Our strategy to show Theorem 6.1.1 is now to
push forward the following exact sequence:

0 K OnX OX(1) OW (1) 0 (E9)

where K is by definition the kernel of the map OnX → OX(1). So, applying π1∗ to
(E9) and assuming that R1π1∗

(
K
)

= R1π1∗
(
IW (1)

)
= 0, we have

OnX π1∗OX(1) π1∗OW (1) 0.

We emphasize that I is not locally free so π1∗(OX(1)) might a priori be different
from I (see Stack project, 26.21. Projective bundles, example 26.21.2). However
our strategy is to prove that these coincide in this case.

https://stacks.math.columbia.edu/tag/01OA
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We use the same notation for the sheaves and their push forward by X ι
↪→ PnX .

Thus, the strategy is to ensure that R1p1∗
(
K
)

= R1p1∗
(
IW (1)

)
= 0 and that

p1∗
(
OX(1)

)
= I ⊗ L in order to get the sequence:

OnX I ⊗ L p1∗OW (1) 0. (E10)

As we will explain below, [p1∗OW (1)] will turn out to be precisely the cycle [V(csα)]
which by definition verifies the following exact sequence:

E OX OV(csα) 0.
csα

This will show eventually Theorem 6.1.1.

6.1.2 Cohomological preliminaries

Lemma 6.1.7. The following vanishings hold:

(i) R1p1∗IX(1) = 0,

(ii) Ri+1p1∗OX(−i) = 0 for every i ∈ {0, . . . , n− 1},

(iii) Rip1∗OX(−i) = 0 for every i ∈ {1, . . . , n− 1}.

Proof. Under the assumption that dim(Z) = 0, by Corollary 3.2.17, the ideal IX
has a locally free resolution of the following form:

0 Gn+1 Gn . . . G2 G1 IX 0 (G•)

where Gi =
i
⊕
j=1

p∗Gij⊗OPnX (−j) when i ∈ {1, . . . , n} and Gn+1 = p∗G′n+1⊗OPnX (−1)

for some locally free sheaves Gij and G′n+1 over X.
Now, a diagram chasing in (G•) shows that R1p1∗IX(1) = 0 provided that

Rkp1∗
(
Gk(1)

)
= 0 for all k ∈ {1, . . . , n+ 1}. By Proposition 3.1.6, those vanishings

are verified since:

• Hk
(
Pn,OPn(−j + 1)

)
= 0 for all k ∈ {1, . . . , n} and all j ∈ {1, . . . , k},

• Hn+1
(
Pn,OPn(−2)

)
= 0

The only non trivial case to check is when k = n. But:

Hn
(
Pn,OPn(−j + 1)

)
' H0

(
Pn,OPn(j − n− 2)

)∨
= 0

because j ≤ n.
For (ii) and (iii), since OX = OPnX/IX, the assertions follow from the same

argument after twisting the complex (G•) by OPnX (−i) for every i ∈ {0, . . . , n −
1}.

Lemma 6.1.8. We have p1∗
(
OX(1)

)
= I ⊗ L.
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Proof. First, OPnX (1) being the relative ample line bundle of the projective bundle

PnX = P
(
On+1
X

)
, we have p1∗OPnX (1) = On+1

X .

Moreover, since IX(1) is the image of the canonical map p∗1E → OPnX (1), we let
H be the kernel of this surjection and we write the exact sequence:

0 H p∗1E IX(1) 0.

Since p1∗p
∗
1E ' E and R1p1∗p

∗
1E = 0, applying p1∗ to this exact sequence, we

get:

0 p1∗H E p1∗IX(1) R1p1∗H 0. (a)

Also, since we proved that R1p1∗IX(1) = 0, applying p1∗ to the canonical exact
sequence

0 IX(1) OPnX (1) OX(1) 0

we get

0 p1∗IX(1) On+1
X p1∗OX(1) 0. (b)

The exact sequences (a) and (b) fit into the following commutative diagram:

0

p1∗H 0

E E

0 p∗IX(1) On+1
X p1∗OX(1) 0

0 R1p1∗H IZ ⊗ L p1∗OX(1) 0

0 0

'

=

where (a) is the left column, (b) is the central row and the map IZ → p1∗OX(1) in
the bottom row is the canonical morphism associated to the projectivization of IZ .
This morphism is an isomorphism over X\Z and therefore IZ ⊗ L → p1∗OX(1) is
injective because IZ is torsion free. Hence p1∗H ' 0 ' R1p1∗H and p1∗OX(1) '
IZ ⊗ L.

6.1.3 Proof of Theorem 6.1.1

As above, let W ⊂ X be the intersection of X with n general relative hyperplanes
of PnX so that [W ] = c1

(
OX(1)

)n
.
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Proof of Theorem 6.1.1. Consider the following exact sequence:

0 K OnX OX(1) OW (1) 0

IW (1)

0 0

β′

(Kz)

We claim that
R1p1∗

(
IW (1)

)
= R1p1∗

(
K
)

= 0.

To prove it, first observe that the Koszul complex

0 OX(−n+ 1) . . . OX(−1)(
n
2) OnX IW (1) 0

is exact. Indeed X has dimension n since, by Lemma 3.2.8, X decomposes as the
union of X̃, the blow-up of X at I, and the torsion part TZ , possibly empty, whose
reduced structure is PnZ′ for a set Z ′ ⊂ Z. Moreover the intersection W in PnX of
X and n generic divisors in |OPnX (ξ)| (since OPnX (ξ) is very ample along the fibres)
has codimension n in X. Hence the Koszul complex of these sections, restricted to
X is exact.

Then, cutting the Koszul complex into short exact sequence and taking direct
images, we see that the desired vanishing holds if we show:

• Ri+1p1∗OX(−i) = 0 for every i ∈ {0, . . . , n− 1},

• Rip1∗OX(−i) = 0 for every i ∈ {1, . . . , n− 1}.

On the other hand, this last vanishing is precisely the content of Lemma 6.1.7 (ii)
and (iii).

Since p1∗OnX ' OnX , p1∗OX(1) ' I ⊗ L, R1p1∗
(
IW (1)

)
= 0 and R1p1∗(K) = 0,

pushing forward by p1 the exact sequence (Kz), we obtain the following commuta-
tive diagram:

0 p1∗K

OnX OnX

0 E On+1
X I ⊗ L 0

E OX p1∗OW (1) 0

0 0

β

=

p1∗β
′

=

(φ0 ... φn)

α
csα

(D2)

where the map α is defined by the diagram (D2) as the cokernel of map β induced

from p1∗(β
′). The composition E → On+1

X
α→ OX gives rise to a cosection sα and,

by the bottom row of (D2), we have p1∗(OW ) ' OV (sα). Therefore,

[V (sα)] = p1∗[W ]. (6.1.2)
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Now, by definition we have dn(Φ) = deg(ξn X̃). Also, we have

deg(W ) = deg(ξn X̃) + deg(ξn TZ )

hence
dn(Φ) = deg(W )− deg(ξn TZ ).

So the statement of the theorem amounts to

deg(W ) = deg
(
V(sα)

)
.

This is guaranteed by (6.1.2).
Since all the general map α as in (E10) can be obtained as cokernel of a general

map β : OnX → O
n+1
X , [V(csα)] does not depend on the general map α so that we

can write [V
(

cs(E)
)
] for a general cosection cs(E).

The fact that deg(W ) = deg(p1∗W ) comes from the decomposition of W .
Indeed, X decomposes into the graph X̃ and the torsion part TZ supported on
PnFittn−1(Z). Hence, we have the equality

[W ] = [X] · c1
(
OPnX (1)

)n
= [X̃] · c1

(
OPnX (1)

)n
+ [TZ ] · c1

(
OPnX (1)

)n
.

Since X̃ is irreducible and σ1 : X̃ → X birational, we have

deg
(
[X̃] · c1

(
OPnX (1)

)n)
= deg

(
σ1∗([X̃] · c1

(
OPnX (1)

)n
)
)
.

Moreover, as a consequence of Theorem 6.1.1 we have:

dt(Φ) = deg
(
[V(cs(E)]

)
− deg

(
p1∗([TZ ] · c1

(
OPnX (1)

)n
)
)
.

6.2 Study of homaloidal hypersurfaces

6.2.1 Measure of the difference between Rees and symmetric
algebras

We relate now the topological degree and the naive topological degree with the
notions of Milnor and Tjurina numbers. For the rest of this section, I is the ideal
of a rational map Φ = (φ0 : . . . : φn) associated to an n+1-subspace V of H0(X,L)
where L is a line bundle over X. We denote by Z the base scheme V(I) in X and
we assume that dim(Z) = 0.

Generalized Milnor and Tjurina numbers

Notation. We set temporarily as a notation that δn = deg
(
c1(L)n

)
which as to

be understood as δ = deg
(
c1(L)

)
when X is the projective space Pn.

Definition 6.2.1. With notation as in Notation 2.2.20, for every z ∈ Z, put:

• τ(Z, z) = length(OZ,z)

• µ(Z, z) = τ(Z, z) + deg(Tz).
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We let τ(Z) =
∑
z∈Z

τ(Z, z) and µ(Z) =
∑
z∈Z

µ(Z, z).

As a direct application of Theorem 6.1.1, we obtain:

Proposition 6.2.2. The following equalities hold:

(i) deg
(
[V(cs(E))]

)
= δn − τ(Z)

(ii) dt(Φ) = δn − µ(Z)

(iii) dt(Φ)− deg(cs(E)) = µ(Z)− τ(Z) = deg(T ) = deg(p1∗T ).

Proof. Looking back at the diagram (D2), we see that V(sα) has the following
presentation:

OnX I ⊗ L OV(sα) 0

sα = (
n∑
i=0

ai1φi . . .
n∑
i=0

ainφi)

where (aij)0≤i≤n,1≤j≤n is an (n + 1) × n general matrix with entries in the field
k. Since by definition, [V(cs(E))] = [V(sα)] we have that deg

(
[V(cs(E))]

)
=

length(OV(sα)) = δn − τ(Z) by definition of τ(Z).
The equalities (ii) and (iii) follow in the same way from the definition of µ(Z)

and τ(Z) and from the decomposition of X as the union of X̃ and TZ .

The number µ(Z) being the sum of the numbers µ(Z, z), we explain how to
computationally compute the number µ(Z, z).

Proposition 6.2.3. Let (aij)0≤i≤n,1≤j≤n be an (n + 1) × n general matrix with

entries in the field k. Then, denoting by (
n∑
i=0

ai1φi, . . . ,
n∑
i=0

ainφi)z the localisation

at z, we have:

µ(Z, z) = length(OX,z/(
n∑
i=0

ai1φi, . . . ,

n∑
i=0

ainφi)z).

Proof. First, since the formation of the symmetric algebra commutes with base
change, we can suppose that Z consists of a single point z so that µ(Z) = µ(Z, z).
Now recall that dt(Φ) can be computed in the following way. A general point

y ∈ Pn is the intersection of n general hyperplanes Lj :
n∑
i=0

aijxi = 0, that is, the

data of an (n + 1) × n general matrix N with entry in the field k. The preimage

of y by Φ is contained in the scheme F′ = V(
n∑
j=0

a1jφj , . . . ,
n∑
j=0

anjφj). Hence, to

compute the topological degree of Φ, it remains to remove the points of F′ in the
base locus.

So

dt(Φ) = length(F) = δn − length(OX,z/(
n∑
i=0

ai1φi, . . . ,

n∑
i=0

ainφi)z),
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and since dt(Φ) is also equal to δn − µ(Z) = δn − µ(Z, z), we have that

length(OX,z/(
n∑
i=0

ai1φi, . . . ,

n∑
i=0

ainφi)z) = µ(Z, z).

As explained to us by Laurent Busé after the defense of this thesis, µZ,z can
also be interpreted as the multiplicity of the Hilbert-Samuel polynomial of the
localization of I at z (see [Eis95, Chapter 12] for the related definitions).

Remark 6.2.4. As it is explained in Example 1.3.9, in practice via Macaulay2,
letting

F′ = V(

n∑
j=0

a1jφj , . . . ,

n∑
j=0

anjφj)

as in the proof of 6.2.3, the preimage of y is equal to the scheme

F = V([(

n∑
j=0

a1jφj , . . . ,

n∑
j=0

anjφj) : (φ0, . . . , φn)]∞)

where, given two ideals J and J ′ of a ring R, we let [J : J ′∞] is the saturation of
J by J ′.

The polar case

In the polar case, X is the projective space Pn over k.

Definition 6.2.5. Let F = {f = 0} be a hypersurface in Pn where f is a homoge-
neous polynomial of degree d in k[x0, · · · , xn]. Let fi = ∂f

∂xi
and I = (f0, . . . , fn) be

the ideal sheaf in OPn generated by the partial derivatives of f , called the jacobian
ideal of f . Recall that we call the map Φf associated to I the polar map.

The topological degree of Φf is called the polar degree of F .

In order to use the Euler identity d · f = x0f0 + . . . + xnfn, we suppose in
the sequel that the characteristic of the base field does not divide the degree of
the polynomial f defining the hypersurface F . We also always assume that the
jacobian ideal I of F is zero-dimensional.

We recall the classical definition of Milnor and Tjurina numbers.

Definition 6.2.6. Let z ∈ Z = V(I) and via a change of coordinates, suppose
that z = (1 : 0 : . . . : 0). Set g[ ∈ k[x1, . . . , xn], the usual deshomogeneisation of a
homogeneous polynomial g ∈ k[x0, · · · , xn] in the chart {x0 6= 0}.

The local Tjurina number at z, denoted by τf (Z, z) is defined as

τf (Z, z) = length
(
Okn,z/(f[, (f[)1, . . . , (f[)n)

)
where (f[)i =

∂f[
∂xi

.

The local Milnor number at z, denoted by µf (Z, z), is defined as

µf (Z, z) = length
(
Okn,z/((f[)1, . . . , (f[)n)

)
where (f[)i =

∂f[
∂xi

.
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The global Tjurina number of F , denoted by τf (Z) (resp. global Milnor number
of F , denoted by µf (Z)) is the sum

∑
τf (Z, z) (resp.

∑
µf (Z, z)) over all z ∈ Z.

We explain now how the numbers µ(Z) and τ(Z) defined in Definition 6.2.1
coincide with the usual definitions of Milnor and Tjurina number given in Defini-
tion 6.2.6.

Proposition 6.2.7. Let F = {f = 0} be a reduced hypersurface in Pn where f is
a homogeneous polynomial in k[x0, · · · , xn] of degree d. Let z ∈ Z = V(I) then:

τ(Z, z) = τf (Z, z) and µ(Z, z) = µf (Z, z).

Proof. Via a change of coordinates, we can suppose z = (1 : 0 : . . . : 0). The
deshomogenisation of the Euler identity in the chart {x0 6= 0} is:

d · f[ = (f0)[ +

n∑
i=1

xi(fi)[

and (fi)[ = (f[)i for 1 ≤ i ≤ n. The equality

((f0)[, . . . , (fn)[) = (f[, (f[)1, . . . , (f[)n)

implies that τ(Z, z) = τf (Z, z).
For the Milnor number, we let A = (aij)0≤i≤n,1≤j≤n a general (n+1)×n matrix

with entries in the field k. By Proposition 6.2.3,

µ(Z, z) = length
(
OPn,z/(

n∑
i=0

ai1fi, . . . ,

n∑
i=0

ainfi)z
)
.

By localisation at z, we have that µ(Z, z) = length(OMA
) where MA is defined as

the cokernel of the following composition map:

Onz On+1
z Oz OMA 0

A (f0 . . . fn)z

whereas µf (Z, z) = length(OM ) where M is defined as the cokernel of the following
composition map:

Onz On+1
z Oz OM 0.

(f0 . . . fn)z

0 0

1

0

0

0 0 1





But, since rank(A) = n, we have length(OMA
) = length(OM ).

In the case when τ(Z, z) = µ(Z, z) for a point z ∈ Z, Z is also called quasi-
homogeneous at z in [Sai80]. As an application of the previous proposition, we
recover a result originally proved over the field C in [DP03].
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Proposition 6.2.8. Let F = {f = 0} ⊂ Pn be a reduced hypersurface of degree d
over an algebraically closed field k. Let Φf = (f0 : . . . : fn) be the polar map of f
and assume that V(f0, . . . , fn) is finite.

Then

dt(Φf ) = (d− 1)n − µf (Z).

Proof. Since f has degree d and V(f0, . . . , fn) is finite, Proposition 6.2.8 follows
from Proposition 6.2.7 and Proposition 6.2.2 (ii) since the polynomials fi have
degree d− 1.

6.2.2 Proofs of Proposition 19 and Proposition 20

In characteristic 3, a homaloidal curve of degree 5

We give eventually the proof of Proposition 19. Recall the result.

Proposition 6.2.9. The curve F = V
(
(x2

1+x0x2)x0(x2
1+x0x2+x2

0)
)

is homaloidal
if and only if the base field k has characteristic 3, in which case the inverse of the
polar map is

Ψ = (x2
1x

2
2 + x0x

3
2 + x4

2 : −x3
1x2 − x0x1x

2
2 − x1x

3
2 : −x4

1 − x0x
2
1x2 + x0x

3
2)

Proof. Here all the computations of resolutions, descriptions of the projectivization
of the ideal sheaf, of the graph of the polar, of the torsion components or of the
Milnor/Tjurina numbers were made using Macaulay2. The curve F is defined
over Z hence over Fp for every p. Given the characteristic p of k, we will denote
the polar of F by Φp.

First, let us explain why the polar of F cannot be birational if p > 20. The idea
here is that the polar has the same behaviour in high enough characteristic than
in characteristic 0. In order to do so we follow the presentation in [Ngu16]. When
p > 20, remark that the base locus of Φp is support over z = (0 : 0 : 1) because the
reduction of the equation of F modulo p does not affect its coefficients.

Now, recall that the conductor invariant δ(Z, z) is defined as the length of the
quotient module OF,z/OF,z, where OF,z is the normalization of the local ring OF,z.
Let r(F, z) denote the number of local branches of F at z. Using étale cohomology,
Deligne showed (cf. [Del73], [MHW01]) that

µ(Z, z) = 2δ(Z, z)− r(F, z) + 1 + Sw(F, z)

where Sw(F, z) denotes the Swan conductor of F at z (see [Del73, 1.7, 1.8] for the
definition).

In our case, we have after computation that δ(Z, z) = 8 and r(F, z) = 3 and
by [Ngu16, Corollary 3.2], we have that Sw(F ) = 0 if p > κ(F ) where κ(F ) =
dim

(
OP2,z)/(f[, αfx0

+ βfx1
) where fx0

and fx1
are the partial derivatives of the

deshomogeneisation f[ of (x2
1 + x0x2)x0(x2

1 + x0x2 + x2
0) with respect of x2 and

(α : β) ∈ P1 is generic. Hence κ(F ) ≤ 20.
So, if p > 20, we have that µ(Z, z) = 14 so d2(Φp) = 2 and F is not homaloidal.
Concerning the remaining case 2 ≤ p ≤ 20, we proceed as follows. The resolu-

tion of the jacobian ideal I over Q is as follows:



6.2. STUDY OF HOMALOIDAL HYPERSURFACES 125

0 O(−1)⊕O(−3) O3 I(4) 0


0 2x3

0+4x0x
2
1+4x2

0x2

x0 −x3
1

−2x1 −6x0x
2
1−8x2

0x2−8x2
1x2−6x0x

2
2



(R11)
where we denote O for the sheaf OP2 .

By a case by case computation, we observe that for every prime p 6= 2 and
p 6= 5 the reduction modulo p of (R11) provides a resolution of Ip = I ⊗Z Fp.
In every characteristic 20 ≥ p ≥ 3 different from 5, Fitt1 Ip = (x0, x1) so Ip is
not a complete intersection and P(Ip) has a torsion component above the point
z = (0 : 0 : 1) ∈ P2.

Moreover, in characteristic other than 2 and 5, the resolution of Xp = P(Ip)
embedded in Pn × Pn is as follow:

0 O(−4,−2) O(−1,−1)⊕O(−3,−1) IXp 0

where O stands for OPn×Pn and we wrote to the right the shift in the variables of
the second factor of the product Pn × Pn. From this resolution, we can compute
that τ(Z, z) = 13 in every characteristic other that 2 and 5.

In characteristic 3, I3 has the following resolution:

0 O(−1)⊕O(−3) O3 I3(4) 0.

 0 x3
0 − x0x

2
1 − x

2
0x2

x0 x3
1

x1 −x2
0x2 − x2

1x2



The difference in characteristic 3 comes from the multiplicity of the torsion
component in X3. Indeed, the torsion component TZp has the following resolution
over Fp for 5 < p ≤ 20.

0 O(−2, 0) O(−1, 0)2 ITZp 0

whereas in characteristic 3, it has resolution:

0 O(−3,−1)
O(−3, 0)2

⊕
O(−2,−1)2

O(−2, 0)3

⊕
O(−1,−1)

ITZ3 0.

Given the generators of ITZ3
(respectively ITZp in characteristic 5 < p ≤ 20), we

compute that the multidegree of TZ3
(resp. TZp) is (2, 0, 0) (resp. (1, 0, 0)). Hence

the difference µ(Z)−τ(Z) is equal to 2 in characteristic 3 (resp. µ(Z)−τ(Z) = 1 if
p > 5) so the Milnor number µ(Z, z) is equal to 15 and d2(Φ3) = 1 in characteristic
3 or else µ(Z, z) = 14 and d2(Φp) = 2 for p > 5. In characteristic 3, the polar map
can be written

Φf = (x4
1 + x3

0x2 + x0x
2
1x2 : −x3

0x1 + x0x
3
1 + x2

0x1x2, x
4
0 − x2

0x
2
1 − x3

0x2).
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and it is a computation to check that Ψ is the inverse of Φf . As we will see in
Remark 7.2.6, the inverse Ψ of Φ is actually the polar map of the dual curve F .

When p = 2 or 5, the polar of F is not dominant.

Remark 6.2.10. What we did is to deepen the multiplicity of the torsion compo-
nent by specializing the resolution of I over Z modulo a prime p for which some
monomials of the presentation matrix disappear (here p = 3 works). More precise-
ly, let Ot be the subscheme of P2 defined by (x0, x1)t. Hence M O1 = 0 in any
characteristic. But if char(k) 6= 3, M O2

has two non zero columns, one of linear
entries and one of quadratic entries whereas if char(k) = 3 the quadratic column-
s vanishes. Hence P(IZ(4) O2

) is different with the characteristic of k. In other
words, in characteristic 3, the torsion part TZ is not equal scheme-theoretically to
PnFittn−1 I contrary to what happens in greater characteristic. It is not clear if such
an example is sporadic or not which leads to the following questions.

Problem F. Given a field k of positive characteristic, are the homaloidal curves
of P2

k of bounded degree? What is the classification of such curves?

Reduction problem in positive characteristic

Proposition 6.2.11. Let k be an algebraically closed field of characteristic 101.

(i) The curve V
(
z(y3 +x2z)

)
has polar degree 2 whereas V

(
z50(y3 +x2z)51

)
has

polar degree 1.

(ii) The curve V
(
(y3+x2z)(y2+xz)

)
has polar degree 5 whereas the curve V

(
(y3+

x2z)31(y2 + xz)4
)

has polar degree 3.

The analysis of the presentation of the jacobian ideal gives also an easy way
to construct examples of non reduced plane curves in positive characteristic where
the topological degree is not preserved by reduction. It suffices to compute the
presentation matrix of the jacobian ideal and adjust the characteristic of the field
in order to modify the first syzygy matrix.

Proof. All the computations of resolution were made using Macaulay2.
Both curves are defined over Z and as in the proof of Proposition 6.2.9, the idea

is to take reduction modulo the prime p = 101 of the resolution of their jacobian
ideal over Z to get a resolution over Fp. We give the complete argument for Item (i).
Item (ii) is similar and left to the reader. As in the proof of Proposition 6.2.9, Ip
stands for I ⊗Z Fp.

The jacobian ideal of V
(
z(y3 + x2z)

)
= 0 has resolution

0 O(−1)⊕O(−2) O3 I101(3) 0,
Φred

IX101
has the following resolution:

0 O(−3,−2)
O(−1,−1)
⊕

O(−2,−1)
IX101 0.
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There is no torsion component above the point z = (1 : 0 : 0) and so the corre-
sponding polar map has topological degree 2.

But the jacobian ideal of the curve V
(
z50(y3 + x2z)51

)
has resolution

0 O(−1)⊕O(−2) O3 I101(3) 0
Φ

and IX101
has the following resolution:

0 O(−3,−2)
O(−1,−1)
⊕

O(−2,−1)
IX101 0.

There is a torsion component above the point z = (1 : 0 : 0), what we can see from
the resolution of X̃:

0 O(−2,−2)2

O(−1,−1)
⊕

O(−2,−1)
⊕

O(−1,−2)

IX̃ 0.

The polar map of the latter curve is given by

(x : y : z) 7→ (xz2 : −49y2z : 50y3)

and its inverse is (x : y : z) 7→ (−37xz2 : −3y2z : y3).





Chapter 7

Inverse of a birational map

Suppose we are given a birational map Φ : Pn 99K Pn. Then how should we
compute the inverse Φ−1? The goal of this chapter is to give an answer to this
question, provided we have certain data on the presentation of the ideal of the
base locus Z. To illustrate the method we propose, we focus on finding the inverse
of the following birational map in characteristic 3 which is the polar map of f =
(x2

1 + x0x2)x0(x2
1 + x0x2 + x2

0).

P2 P2

(x0 : x1 : x2) (x4
1 + x3

0x2 + x0x
2
1x2 : −x3

0x1 + x0x
3
1 + x2

0x1x2 :

x4
0 − x2

0x
2
1 − x3

0x2)

Φex :

Recall that if Φ : Pn 99K Pn is birational, the inverse Φ−1 is also given by n+ 1
homogeneous polynomials φ′0, . . . , φ

′
n ∈ k[x0, · · · , xn] of the same degree δ′ such

that (
φ0(φ′0, . . . , φ

′
n), . . . , φn(φ′0, . . . , φ

′
n)
)

= (x0P, . . . , xnP )

for a homogeneous polynomial P ∈ k[x0, · · · , xn] and(
φ′0(φ0, . . . , φn), . . . , φ′n(φ0, . . . , φn)

)
= (x0Q, . . . , xnQ)

for a homogeneous polynomial Q ∈ k[x0, · · · , xn] what we commonly denote by
Φ ◦ Φ−1 = Φ−1 ◦ Φ = id, see Section 1.3.

We emphasize that if the polynomials φi =
n∑
j=0

aijxj are of degree 1 for all

i ∈ {0, . . . , n}, then Φ is completely defined by the matrix A = (aij)0≤i,j≤n and
the problems concerning the birational properties of Φ or concerning the inverse of
Φ are equivalent to solve the following linear system

y0 a00x0 . . . a0nxn

yn an0x0 . . . annxn

(E)

=

=

+

+

+

+

129



130 CHAPTER 7. INVERSE OF A BIRATIONAL MAP

that is, Φ is birational if and only if A is invertible and in this case Φ−1 is the map
associated to the matrix A−1. So the problem of finding the inverse of birational
map can be taken as a generalisation of a classical problem in linear algebra.

After presenting in Section 7.1 the currently available techniques to compute
Φ−1, we will point out a method based on our analysis of torsion components.
The idea is that, while the inverse is essentially known once we have the bigraded
generators of the ideal of the Rees algebra (corresponding to the blow-up Γ of X
along Z), the computation may fail because these generators are sometimes inac-
cessible. On the other hand, the symmetric algebra (corresponding to X = P(IZ))
is much easier to deal with and essentially it is computed from the presentation of
IZ . Also, we know that Γ is obtained from X by removing the torsion components,
which are supported over the schemes defined by the Fitting ideals of IZ . Then, it
suffices to saturate the ideal of X with respect to the Fitting ideals of IZ (pulled
back to Pn × Pn) to obtain the desired generators.

For the rest of the chapter, the settings are as follows.

Notation 7.0.1. Let Φ : Pn1 99K Pn2 be a dominant map given by n+1 homogeneous
polynomials φ0, . . . , φn ∈ k[x0, · · · , xn] of the same degree δ and without common
factor. Let also R1 = k[x0, . . . , xn] (resp. R2 = k[y0, . . . , yn]) be the coordinate
ring of Pn1 (resp. Pn2 ) and denote by IZ the ideal of R1 of the base locus Z of Φ.

Denote also by S = R1⊗R2 the coordinate ring of Pn1 ×Pn2 . We identify S with
the space of homogeneous polynomials in both variables x0, . . . , xn and y0, . . . , yn
and an element P ∈ S of degree d1 in the x variables of degree d2 in the y variables
is said of bidegree (d1, d2).

In the case that Φ is birational, we let Φ−1 : Pn2 99K Pn1 given by φ′0, . . . , φ
′
n ∈

k[y0, . . . , yn] be the inverse of Φ with base locus ideal IZ′ .

7.1 State of the art to compute the inverse

Let us adapt first the notions and notation of Section 2.1 and Section 2.2 in the
context of Notation 7.0.1. Let M be the presentation matrix of IZ and denote by
⊕
i≥1

Rni1 (−di)→ Rn+1
1 the graded map defined by M . Our convention is that we do

not include pieces of the form R0
1 in the direct sum ⊕

i≥1
Rni1 (−di).

The ideal IX of X = P(IZ) in Pn1 × Pn2 is thus generated by polynomials of
bidegree (di, 1) for i such that ni 6= 0. More precisely, there is a surjection

⊕
i≥1

Sni(−di,−1)→ IX → 0.

Example 7.1.1. Let φ0, φ1, φ2 be the three polynomials generating the base ideal
IZ of Φex. A minimal free resolution of IZ reads

0 R1(−1)⊕R1(−3) Rn+1
1 IZ(4) 0

M =

 0 x3
0 − x0x

2
1 − x2

0x2

x0 x3
1

x1 −x2
0x2 − x2

1x2
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and IX verifies:

S(−1,−1)⊕ S(−3,−1)→ IP(IZ) → 0.

Moreover, as we saw in Section 2.1, the graph ΓΦ of Φ is isomorphic to the
blow-up of Pn1 along Z such that we have the following commutative diagram

Pn1 × Pn2

P(IZ)

Γ

Pn1 Pn2

p1 p2

π1 π2

σ1 σ2

Φ

where p1 (resp. p2) is the projection over the first (resp. second) factor.
Now assume that Φ is birational of inverse Φ−1. Of course Γ = Graph(Φ) =

Graph(Φ−1) but X′ = P(IZ′) might differ from X. This is clear from the study of
a given set of generator of the ideal IX′ in Pn1 ×Pn2 . Indeed, as for Φ, let M ′ be the

presentation matrix of IZ′ and denote by ⊕
i≥1

R
n′i
2 (−d′i) → Rn+1

2 the graded map

defined by M ′ and there is a surjection

⊕
i≥1

Sni(−1,−d′i)→ IP(IZ′ )
→ 0.

Hence provided that M (or M ′) does not have only linear entries, P(IZ) and P(IZ′)
differ. In this case, they both differ also from Γ since the ideal IΓ of Γ in Pn1 × Pn2
contains stricly IP(IZ) and IP(IZ′ )

.
We summarize the situation into the following commutative diagram

Pn1 × Pn2

X X′

Γ

Pn1 Pn2

π1 π′2

σ1 σ2

Φ

Φ−1

p1 p2

where, for the clarity of the diagram, we did not mention the map π2 : X → Pn2
(resp. π′1 : X′ → Pn1 ) which is the restriction of the second projection p2 to X (resp.
of the first projection p1 to X′).
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7.1.1 Inverse of the standard Cremona map

Recall that the standard Cremona map τ is defined as follows

τ : Pn1 Pn2
(x0 : . . . : xn) (φ0 : . . . : φn

)
where φi = x0 . . . xi−1xi+1 . . . xn for i ∈ {0, . . . , n}.

It is a computation to show that the standard Cremona map is an involution
i.e. that τ ◦ τ = id. Our goal here is to explain a general method to recover this
result.

The ideal IZ = (φ0, . . . , φn) of the base locus Z of τ has the following minimal
free presentation:

0 OPn(−1)n On+1
Pn IZ(n) 0

x0 0 0

−x1 x1

0 −x2
0 0

xn−1

0 0 −xn




M =

Hence, denoting y0, . . . , yn the variables of Pn2 , the ideal sheaf IX of the pro-
jectivization X of IZ in Pn1 × Pn2 is generated by the entries in the row matrix(
y0 . . . yn

)
M i.e.

IX = (y0x0 − y1x1, . . . , yn−1xn−1 − ynxn).

The remark is that, in this precise case, IX is also generated by the entries of
the row matrix:

y0 0 0

−y1 y1

0 −y2

0 0
yn−1

0 0 −yn



(
x0 . . . xn

)
and we can reverse the construction of the projectivization X from the ideal IZ .
Indeed, since the inverse τ−1 of τ has also a base locus Z ′ in Pn2 with ideal IZ′ ,
we can embed the projectivization X′ of IZ′ into Pn1 × Pn2 via the presentation
matrix M ′ of IZ′ . The ideal IX′ is generated by the entries in the row matrix(
x0 . . . xn

)
M ′. So here a candidate to be the presentation matrix of IZ′ is the

matrix:
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y0 0 0

−y1 y1

0 −y2

0 0
yn−1

0 0 −yn




M ′ =

and indeed, in the case of the standard map, taking the n × n-minors of M ′, we
recover the map τ ′, up to a change of coordinates i.e. we recover the base ideal IZ′

of τ ′, the inverse of τ .
To recover completely τ ′, it remains to identify this last change of coordinates.

In order to do it, one solution is to compute n + 1 n × n-minors of M ′ denot-
ed by φ′′0 , . . . , φ

′′
n (we denote τ ′′ the map associated to these generators of IZ′),

and to write down explicitly the condition on a change of coordinates associated
to a matrix A = (aij)0≤i,j≤n ∈ PGln+1(k). That is equivalent to compute the
image y0 = τ(x0), . . . yn+1 = τ(xn+1) of n + 2 general points x0, . . . xn+1 by τ ,
to compute the image x0′′ = τ ′′(y0), . . . , xn+1′′ = τ ′′(yn+1) and to compute the
automorphism of Pn sending the projective basis x0′′, . . . , xn+1′′ to the projective
basis x0, . . . , xn+1 (this last step, way simpler that what we originally thought of
was explained to us by Laurent Manivel).

7.1.2 Jacobian dual

Of course the previous example is very special. For instance, it is of linear type
and the ideal of the blow-up Γ (or of X) is only generated in bi-degree (1, 1) i.e. is
generated by linear forms with respect to the x and y variables. But we give here
a sketchy presentation of a result due to F.Russo and A.Simis, extending to more
general situations this previous method [RS01]. For the sake of concision and to
keep easily the analogy with the standard map, we only present the result in the
case of a dominant rational map Φ : Pn 99K Pn but we emphasize that it extends
in greater generality.

Let Φ : Pn1 99K Pn2 be a dominant rational map given by n + 1 homogeneous
polynomials φ0, . . . , φn ∈ k[x0, · · · , xn] of degree δ and let

Rm1 Rn+1
1 IZ(δ) 0

M

be a free presentation of the ideal IZ of the base locus Z of Φ in Pn. We decompose
the presentation matrix M as the concatenation of a matrix M1 whose columns
are the columns of M with linear entries and a matrix M2 made by the other
columns of M . We emphasize that, denoting y0, . . . , yn the variables of Pn2 , the
entries of the row matrix

(
y0 . . . yn

)
M1 are the equations (of bi-degree (1, 1))

of the projectivization X of IZ in Pn1 × Pn2 .
Following [RS01], we also denote by Θ the Jacobian matrix of the row matrix(

y0 . . . yn
)
M1 with respect to the variables x0, . . . , xn of Pn1 and q stands for

the number of columns of M1. Let Z(Θ) be the kernel of Θ : Rn+1
2 → Rq2. Given
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a vector g = (g0, . . . , gn), consider the morphism R1 → R2 which sends xi to gi
for i ∈ {0, . . . , n− 1} and apply it to the entries of the matrix M1. The result is a
matrix with entries in R2 which we will denote by M1(g).

Definition 7.1.2. The ideal IZ is said to have the strong rank property if the
matrix Θ has rank at most n and, for some minimal homogeneous generator g ∈
Z(Θ), the evaluated matrix M1(g) has rank n.

Remark 7.1.3. In Definition 7.1.2, it is implicit that the strong rank property of
an ideal does not depend on the choice of the vector g. The result is even stronger
[RS01, Proposition 1.2, Supplement]. It states that any two such vectors g and g′

are proportional.

Looking back to the case of the standard Cremona map, we have that M1 = M ,
M2 = 0,

y0 0 0

−y1 y1

0 −y2

0 0
yn−1

0 0 −yn




Θ =

and given g = (y1 . . . yn, . . . , y0 . . . yn−1) (which is in Z(Θ)), we have that M1(g)
has rank n = rank(M). Hence IZ has the strong rank property and the result is
that Φ is birational with an inverse given by the vector g. This is the content of the
following proposition which is a combination of [RS01, Theorem 1.4] and [RS01,
Proposition 2.1].

Proposition 7.1.4. Let Φ : Pn 99K Pn be a dominant rational map, M be the
presentation matrix of the ideal IZ of the base locus Z of Φ and denote as above
by M1 the linear part of M .

Then Φ is birational and rank(M) = rank(M1) if and only if IZ has the strong
rank property.

Moreover, the inverse of Φ is given by any vector g ∈ Z(Θ).

As far as we know, this result is the first to give a computationally very efficient
method to construct the inverse of a birational map and this method was indeed
the first method implemented in the Macaulay2 package ”Cremona” in order to
invert birational maps [Sta17]. However, there exists birational maps Φ whose base
locus ideals IZ do not have the strong rank property, for instance Φex. Hence we
present now an alternative computational method to invert birational maps.

7.2 Computation of the inverse

We refer to Notation 7.0.1 for all the notation we use and we assume that the map
Φ : Pn1 99K Pn2 is birational.
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Example 7.2.1. Over a field of characteristic different from 2, the map Φex is
birational but its base locus ideal IZ does not have the strong rank property.
Indeed, a presentation of IZ reads

0 R1(−1)⊕R1(−3) R3
1 IZ(4) 0.

 0 x3
0 − x0x

2
1 − x2

0x2

x0 x3
1

x1 −x2
0x2 − x2

1x2



and the matrix M1 of columns with entries of degree 1 of the presentation matrix
M of IZ has rank 1 which is smaller than 2.

Proposition 7.2.2. The polynomials of bidegree (1, 1) generating IP(IZ) in Pn1×Pn2
are in one-to-one correspondence with the polynomials of bidegree (1, 1) generating
IP(IZ′ )

.

Proof. Let

l0...
ln

 =

a00x0 + . . .+ a0nxn
...

an0x0 + . . .+ annxn

 be a linear syzygy of IZ seen as a

module over R1 generated by (φ0, . . . , φn).
Hence, since IP(IZ) ⊂ IGraph(Φ), the polynomial y0(a00x0 + . . .+ a0nxn) + . . .+

yn(an0x0 + . . .+ annxn) is a generator of IGraph(Φ) over S = R1 ⊗R2. Since

y0(a00x0 + . . .+ a0nxn) + . . .+ yn(an0x0 + . . .+ annxn) =

x0(a00y0 + . . . an0yn) + . . .+ xn(a0ny0 + . . .+ annyn)

and that Graph(Φ) = Graph(Φ−1), we have that

 a00y0 + . . . an0yn
...

a0ny0 + . . .+ annyn

 is a (lin-

ear) syzygy of the base locus ideal IZ′ of Φ−1.
Hence, given a minimal presentation of IZ i.e. the presentation matrix M of IZ

does not have entry of degree 0, all the columns of degree 1 provide independent
columns of degree 1 in the presentation matrix M ′ of IZ′ and there is no other
column of degree 1 in M ′ otherwise by the reversibility of the construction, it
would provide other columns of degree 1 in M .

If we denote by I(1,1) the ideal of polynomials of bidegree (1, 1) generating IP(IZ)

(or IP(IZ′ )
), the subscheme L = V(I(1,1)) of Pn1 ×Pn2 contains both P(IZ) and P(IZ′)

and when IZ has the strong rank property, L and P(IZ) have the same dimension
even if they are not equal.

In the case that IZ has the strong rank property, the result is that we can
compute the inverse of Φ without computing the equations of Graph(Φ) i.e. without
computing the Rees algebra R(IZ) of IZ . In this perspective, the algorithm we
propose for the case that IZ do not have the strong rank property is a method of
computing the Rees algebra R(IZ). We present the algorithm before commenting
it.

Algorithm. (1) Compute the presentation matrix M of IZ over R1.
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⊕
i≥0

R1(−i)ai Rn+1
1 IZ(δ) 0

M

(2) Over S = R1 ⊗ R2, form the ideal IP(IZ) generated by the entries in the row

matrix
(
y0 . . . yn

)
M .

(3) Compute the saturation
n−1
⊕
i=1

[IP(IZ) : p∗1Ii(M)∞] of IP(IZ). Since the ideal

Ii(M) are the Fitting ideals whose support are the torsion components, the
final ideal is the ideal IΓ of the blow-up of IZ . Another way to compute IΓ is
to compute the primary decomposition of IP(IZ) and to choose the component
of the blow-up Γ. This latter method reveals to be computationally expensive.

(4) Form the ideal IP(IZ′ )
generated by the generators of bidegree (1, d′) of IΓ and

denote by N the row matrix of those generators. The ideal IP(IZ′ )
is the ideal

of P(IZ′).

⊕
i≥0

S(−1,−i)bi IP(IZ′ ) 0
N

(5) Let M ′ be the jacobian matrix of N with respect to the variables x0, . . . , xn.
The matrix M ′ is the presentation matrix IZ′ .

(6) Compute the generators of the cokernel. If M ′ is a (n + 1) × n-matrix, this
is the same as computing the n×n-minors of M ′. If M ′ is bigger, this is the
same as computing the syzygies matrix of the transpose tM ′ of M ′.

(7) Compute the change of coordinates in order to find generators φ′0, . . . , φ
′
n of

IZ′ such that Φ−1 = (φ′0, . . . , φ
′
n) as we explained in the study case of the

standard Cremona map.

Before commenting the algorithm, we right down its implementation on the
computer system Macaulay2 with the map Φex.

Example 7.2.3. We give the detailed interaction with Macaulay2. Let us em-
phasize that we present the computation over a base field of characteristic 3 because
it was originally our motivation and the last step of computation of the polynomials
φ′0, . . . , φ

′
n is way more easier in this case.

(0) We start by the definitions of the field, rings, ideal. Here I stands for the
ideal IZ .

i1 : k = ZZ/3;

i2 : R1 = k[x_0..x_2];

i3 : R2 = k[y_0..y_2];

i4 : I = ideal (x_1^4+x_0^3*x_2+x_0*x_1^2*x_2,-x_0^3*x_1+

x_0*x_1^3+x_0^2*x_1*x_2, x_0^4-x_0^2*x_1^2-x_0^3*x_2);



7.2. COMPUTATION OF THE INVERSE 137

(1) We compute the presentation matrix M of IZ .

o4 : Ideal of R1

i5 : M = syz gens I

o5 = {4} | 0 x_0^3-x_0x_1^2-x_0^2x_2 |

{4} | x_0 x_1^3 |

{4} | x_1 -x_0^2x_2-x_1^2x_2 |

3 2

o5 : Matrix R1 <--- R1

(2) We compute now the primary decomposition of IP(IZ). In the code, we denote
by J the ideal IP(IZ) and by IG the ideal IΓ.

i6 : S = R1**R2; --tensor product of R1 and R2

i7 : J = ideal (matrix{{y_0,y_1,y_2}}*sub(M,S) );

o7 : Ideal of S

i8 : time primaryDecomposition J

-- used 0.110233 seconds

2 3 2

o8 = {ideal (x y + x y , x y y + x y + x y y y - x y y

0 1 1 2 0 0 2 1 1 1 0 1 2 2 1 2

------------------------------------------------------

2 3 2 2 2 2 2

- x y y - x y , x y y - x y - x y y - x x y y - x x y

2 0 2 2 2 0 0 2 1 1 1 0 2 0 2 0 2 0 2 2

-------------------------------------------------------------

3 2 3 2 2 2

+ x x y y , x y - x x y + x y - x x y - x x y - x x y ),

1 2 1 2 0 0 0 1 0 1 1 0 2 0 0 2 2 1 2 2

-----------------------------------

2 2

ideal (x y + x y , x , x x , x )}

0 1 1 2 1 0 1 0

o8 : List

i9 : IG = (primaryDecomposition J)_0

2 3 2

o9 = ideal (x y + x y , x y y + x y + x y y y - x y y

0 1 1 2 0 0 2 1 1 1 0 1 2 2 1 2
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-----------------------------------------------------

2 3 2 2 2 2 2

- x y y - x y , x y y - x y - x y y - x x y y - x x y

2 0 2 2 2 0 0 2 1 1 1 0 2 0 2 0 2 0 2 2

------------------------------------------------------------

3 2 3 2 2 2

+ x x y y , x y - x x y + x y - x x y - x x y - x x y )

1 2 1 2 0 0 0 1 0 1 1 0 2 0 0 2 2 1 2 2

o9 : Ideal of S

(4) Now, the ideal J′ stands for IP(IZ′ )
.

i10 :

J’ = ideal ( (gens IG)_(0,0) , (gens IG)_(0,1) );

o10 : Ideal of S

(5) We directly right down the matrix M ′.

i11 : M’ = matrix{{y_1,y_0*y_2^2},{y_2,y_1^3+y_0*y_1*y_2},

{0,-y_1^2*y_2-y_0*y_2^2-y_2^3}};

3 2

o11 : Matrix S <--- S

and we consider M′ as a matrix of R2.

(6) Even if the ideal IZ′ is the ideal of the 2× 2-minors of M ′, we compute the
generators of IZ′ with the following more general method:

i12 : syz transpose M’

o12 = | -y_1^2y_2^2-y_0y_2^3-y_2^4 |

| y_1^3y_2+y_0y_1y_2^2+y_1y_2^3 |

| y_1^4+y_0y_1^2y_2-y_0y_2^3 |

3 1

o12 : Matrix S <--- S

where, as for M′, we consider the latter matrix with entries in R2. Its entries
are the generators of IZ′ .

(7) For the final step consisting in finding the polynomials φ′0, . . . , φ
′
n, let us

not follow the strategy of finding the change of coordinates by posing the
conditions (this strategy amounts to compute the inverse of a 12× 12 matrix
after choosing 4 general points of P2). The fact is that, in characteristic 3, we
can find this change of coordinates by testing first some values. And indeed,
starting from

Φ′′ = (−y2
1y

2
2 − y0y

3
2 − y4

2 : y3
1y2 + y0y1y

2
2 + y1y

3
2 : y4

1 + y0y
2
1y2 − y0y

3
2)
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we find that the inverse of Φ is

Φ−1
ex = (y2

1y
2
2 + y0y

3
2 + y4

2 : −y3
1y2 − y0y1y

2
2 − y1y

3
2 : −y4

1 − y0y
2
1y2 + y0y

3
2).

Remark 7.2.4. If the ultimate goal is to find explicitly the polynomials φ′0 . . . , φ
′
n

of Φ−1
ex , we emphasize that the two methods we detailed, namely to pose the condi-

tions over the change of coordinates or to be tricky, require a lot of time. However,
as we will see, Item (7) of the algorithm is fastly handled in some Macaulay2
packages (though it is unclear to us what methods are followed by these packages).

Remark 7.2.5. As we explained in Item (3) of the algorithm, computing the
primary decomposition of IP(IZ) is equivalent to express the scheme P(IZ) as the
union of Γ and of other torsion components. But, in our cases of rational maps
Φ : Pn 99K Pn, we know the shape of those torsion components since they are
supported over the base scheme Z of Φ. In the case of Φex the base scheme is
supported over the point V(x0, x1), hence P(IZ) is the union of Γ with a torsion
part TZ whose reduced structure is isomorphic to P2

(0:0:1). Hence the ideal of Γ is

the saturation of the ideal of P(IZ) by the ideal ITZ = (x0, x1). The gain is that
the computation of the saturation in is less expansive than the computation of the
primary decomposition in Item (2).

i13 :

time saturate(J, ideal(x_0,x_1) )

-- used 0.00715082 seconds

2 3 2

o13 = ideal (x y + x y , x y y + x y + x y y y - x y y

0 1 1 2 0 0 2 1 1 1 0 1 2 2 1 2

------------------------------------------------

2 3 2 2 2 2 2

- x y y - x y , x y y - x y - x y y - x x y y - x x y

2 0 2 2 2 0 0 2 1 1 1 0 2 0 2 0 2 0 2 2

-------------------------------------------------------------

3 2 3 2 2 2

+ x x y y , x y - x x y + x y - x x y - x x y - x x y )

1 2 1 2 0 0 0 1 0 1 1 0 2 0 0 2 2 1 2 2

o13 : Ideal of S

Let us mentions that several Macaulay2 packages, for instance ”Cremona”
and ”RationalMaps” packages provide the possibility to compute the inverse of
any birational map and not only those with a base ideal having the strong rank
property. However, it is not clear from our study of those packages if they use the
blow-up algebra and if so, how do they compute it.

For us, a problem prolonging the concept of the strong rank property is the
following. As we saw in Proposition 7.2.2, the generators of bidegree (1, 1) of the
ideal of P(IZ) are the generators of bidegree (1, 1) of the ideal of P(IZ′). Hence,
it seems to us that the ideal of P(IZ′) should be easier to compute in the case
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that IP(IZ) is generated by some polynomials of bidegree (1, 1) or equivalently, if
IZ has some linear syzygies. In this direction, the strong rank property would be
the optimal case in which the ideal P(IZ′) is the most easily computable.

We finish this chapter with the following remark.

Remark 7.2.6. Recall that, as we explained at the beginning of the chapter, in
characteristic 3, the map Φex is the polar map of the curve F = V

(
(x2

1 +x0x2)(x2
1 +

x0x2 +x2
0)x0

)
. Consider now the dual curve F ′ of F . It is actually the union of the

dual curve C ′1 of C1 = V(x2
1 +x0x2), C ′2 of V(x2

1 +x0x2 +x2
0) and V (y2) the dual of

the singular point of F . Here we write y0, y1, y2 for the variables of the dual P2′. To
compute C ′1, we compute the hessian of x2

1 +x0x2 which is equal in characteristic 3

to H =

0 0 1
0 −1 0
1 0 0

. Hence C ′1 = V
( (
y0 y1 y2

)
Ht
(
y0 y1 y2

) )
= V(−y2

1 −

y0y2) and in the same way C ′2 = V(−y2
1 − y0y2 + y2

2).
Considering the polar Φex′ of F ′, we remark that Φex′ = Φ−1

ex . The fact that
the inverse of the polar map is the polar of the dual curve is actually true for all the
homaloidal plane curve we know at the moment (i.e. the three homaloidal curves
in any characteristic different from 2, and the one in characteristic 3).

It could be interesting to investigate if this phenomenon is more general.
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[BCS10] L. Busé, M. Chardin, and A. Simis. Elimination and nonlinear equations
of the rees algebra. J. Algebra, 324:1314–1333, 2010.

[BH93] W. Bruns and J. Herzog. Cohen-Macaualy rings. Cambridge Studies in
Adv. Math., 1993.
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Résumé

Dans cette thèse, nous interprétons géométriquement la torsion de l’algèbre
symétrique d’un faisceau d’idéaux IZ d’un schéma Z défini par n+1 équations
dans une variété n-dimensionnelle. Ceci revient à étudier la géométrie de la
projectivisation de IZ . Les applications de ce point de vue concernent en
particulier le domaine des transformations birationnelles de l’espace projectif
de dimension 3 au sujet duquel nous construisons des transformations bi-
rationnelles explicites qui ont le même degré algébrique que leur inverse, le
domaine des courbes libres et presque-libres au sujet duquel nous généralisons
une caractérisation des courbes libres en étendant les notions de nombre de
Milnor et de nombre de Tjurina. Nous abordons aussi le sujet des hypersur-
faces homaloides, notre motivation initiale, au sujet duquel nous exhibons en
particulier une courbe homaloide de degré 5 en caractéristique 3. La dernière
application concerne le calcul de l’inverse d’une transformation birationnelle.

Mots clés: Géométrie algébrique, Algèbre commutative, Théorie des singularités,

Transformations birationelles, Hypersurfaces homalöıdes, courbes libres et presque libres,

algèbre de Rees et algèbre symmétrique, Syzygies, Résolutions

Title of the thesis : Geometry of the projectivization of ideals and
applications to problems of birationality

Abstract

In this thesis, we interpret geometrically the torsion of the symmetric
algebra of the ideal sheaf IZ of a scheme Z defined by n + 1 equations in
an n-dimensional variety. This is equivalent to study the geometry of the
projectivization of IZ . The applications of this point of view concern, in
particular, the topic of birational maps of the projective space of dimension
3 for which we construct explicit birational maps that have the same algebraic
degree as their inverse, free and nearly-free curves for which we generalise a
characterization of free curves by extending the notion of Milnor and Tjurina
numbers. We tackle also the topic of homaloidal hypersurfaces, our original
motivation, for which we produce in particular a homaloidal curve of degree
5 in characteristic 3. The last application concerns the computation of the
inverse of a birational map.

Keywords: Algebraic Geometry, Commutative algebra, Singularity theory, Bira-

tional maps, Homaloidal hypersurfaces, free and nearly free curves, Symmetric and Rees

algebra, Syzygies, Resolutions
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